TEORIA DEI CIRCUITI

1. INTRODUZIONE

Si consideri un sistema elettrico costituito da un certo numero di "componenti" (vedi figura 1). Ciascun componente (A, B, C, D) è racchiuso all'interno di un contenitore da cui escono dei terminali collegati elettricamente tra di loro mediante dei fili metallici (1, 2, 3, 4, 5).

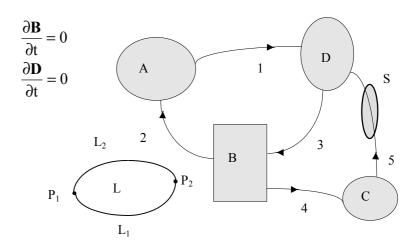


Figura 1

Tutto il sistema è immerso nell'aria che è un mezzo isolante. La regione costituita da tutto lo spazio meno quello occupato dai componenti (spazio esterno ai componenti) è una **regione a connessione lineare semplice**: presa una qualsiasi linea chiusa che giace in tale regione, esiste almeno una superficie che si appoggia a tale linea che giace anch'essa tutta all'interno della regione considerata. Si supponga che nello spazio esterno ai componenti sia possibile considerare nulla la derivata temporale della induzione magnetica e dello spostamento elettrico. Si consideri quindi la circuitazione del campo elettrico relativa ad una qualsiasi linea chiusa L che giace nello spazio esterno ai componenti. Risulta:

$$\oint_{\mathbf{L}} \mathbf{E} \cdot d\mathbf{l} = -\frac{d\Phi_{\mathbf{B}}}{dt} = 0 \tag{1}$$

Dalla (1) segue che la circuitazione del campo elettrico lungo una linea che congiunge due punti qualsiasi P_1 e P_2 , rimanendo sempre nello spazio esterno ai componenti, non dipende dalla particolare linea scelta ma unicamente dai punti P_1 e P_2 (si dice che **il campo elettrico è conservativo**) e viene chiamata differenza di potenziale tra il punto P_1 ed il punto P_2 :

$$\int_{P_1,L_1}^{P_2} \mathbf{E} \cdot \mathbf{dl} = \int_{P_1,L_2}^{P_2} \mathbf{E} \cdot \mathbf{dl} = \mathbf{v}_{12}$$
(2)

Si consideri una superficie chiusa S qualsiasi che giace nello spazio esterno ai componenti, risulta:

$$\int_{S} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot \mathbf{n} \, dS = 0 \qquad \Rightarrow \qquad \int_{S} \mathbf{J} \cdot \mathbf{n} \, dS = 0$$
(3)

La densità volumetrica di corrente elettrica, nello spazio esterno ai componenti è nulla ovunque tranne che all'interno delle connessioni metalliche. In particolare si consideri una superficie S che racchiude al suo interno solo un tratto di connessione metallica; dalla (3) segue che la corrente che circola in quella connessione, non dipende dal punto considerato della connessione, ma è una caratteristica della connessione.

Nessun sistema elettrico reale verifica esattamente le ipotesi assunte per quello sopra descritto; tali ipotesi sono però soddisfatte con buona approssimazione per molti sistemi elettrici reali, per descrivere i quali si fa uso di un modello ideale che prende il nome di circuito elettrico a costanti concentrate. In particolare, per tali sistemi, la circuitazione del campo elettrico lungo una linea che congiunge due punti non è indipendente dalla linea scelta, ma la dipendenza è così piccola che

risulta trascurabile a tutti gli effetti pratici. In tal caso, invece di parlare di differenza di potenziale, per indicare l'approssimazione fatta, si preferisce parlare di tensione tra i due punti.

2. DEFINIZIONI E LEGGI DI KIRCHHOFF

Un CIRCUITO ELETTRICO A COSTANTI CONCENTRATE, o rete elettrica, è un insieme di componenti elettrici ideali soggetto ai vincoli (che saranno enunciati nel seguito) noti come Leggi di Kirchhoff. Nel seguito, per semplicità, con la parola circuito elettrico si intenderà circuito elettrico a costanti concentrate.

La carica elettrica, indicata con q, è la proprietà intrinseca della materia responsabile dei fenomeni elettrici e magnetici. L'unità di misura della quantità di carica è il coulomb (C). In un circuito elettrico le cariche elettriche possono muoversi attraverso i componenti e le connessioni metalliche. La corrente, indicata con i, che passa attraverso una data superficie (ad esempio la sezione di una connessione metallica) è definita dalla carica elettrica che attraversa quella superficie nell'unità di tempo. L'unità di misura della corrente è l'ampere (A); un ampere è pari ad un coulomb al secondo.

Possiamo dunque esprimere la corrente come: $i = \frac{dq}{dt}$

Il moto della carica elettrica attraverso i componenti e le connessioni metalliche richiede energia. La **tensione**, indicata con v_{BA} , tra due terminali A e B in un circuito è il lavoro richiesto per muovere una carica positiva unitaria da A (terminale -) a B (terminale +). L'unità di misura della tensione è il volt (V).

Possiamo dunque esprimere la tensione come: $v_{BA} = \frac{dw_{A \to B}}{dq}$

Un componente elettrico ideale (vedi figura 2) è caratterizzato da un numero di terminali, o morsetti (solitamente un componente a due terminali è detto bipolo, uno a tre terminali è detto tripolo, etc., uno a N terminali è detto N-polo,).

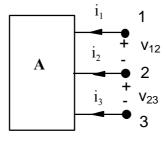


Fig. 2 Componente a tre terminali

A ciascun terminale è associata una corrente che è univocamente definita, in valore e segno, una volta che sia stato arbitrariamente scelto il suo verso positivo (indicato dalla freccia): una corrente i_1 = 2 significa che una corrente di intensità pari a 2 Ampère entra nel componente A attraverso il terminale 1, viceversa, una corrente i_1 = -2 significa che una corrente di intensità pari a 2 Ampère esce dal componente A attraverso il terminale 1

Ad ogni coppia di terminali è associata una tensione che è univocamente definita, in valore e segno, una volta che sia stato arbitrariamente scelto il terminale di riferimento (indicato col segno -): una tensione $v_{12} = 2$ significa che il terminale 1 si trova ad un potenziale superiore di 2 Volt rispetto a quello del terminale 2, viceversa una tensione $v_{12} = -2$ significa che il terminale 1 si trova ad un potenziale inferiore di 2 Volt rispetto a quello del terminale 2. Talvolta l'indicazione del "-" e del "+" viene sostituita da una freccia che indica il terminale positivo.

Un componente con due terminali viene chiamato bipolo. Nel seguito, per semplicità, si supporrà che i circuiti in esame siano costituiti di soli bipoli; se ciò non fosse vero, si può pensare di ricondursi alla ipotesi, sostituendo i componenti con più di due terminali con opportuni circuiti equivalenti costituiti da soli bipoli: ciò è sicuramente possibile mediante l'introduzione di generatori pilotati (che verranno definiti nel seguito).

All'interno del circuito, I terminali appartenenti a diversi componenti sono collegati tramite connessioni ideali, caratterizzate dall'avere una tensione nulla ai loro capi (vedi figura 3).

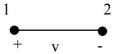


Fig. 3 Connessione ideale (v = 0)

Un <u>nodo</u> di un circuito elettrico è un punto a cui sono collegati due o più terminali, oppure è un terminale isolato. Il circuito della figura 4 è costituito da cinque bipoli; collegati a 4 nodi (A, B, C, D). Una <u>sequenza chiusa di nodi</u> è una successione di nodi tale che il primo nodo coincide con l'ultimo. (Ad esempio, sono sequenze chiuse AA, ABA, ABCA, ABCDA, etc.)

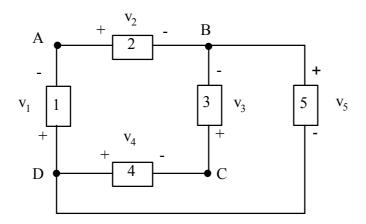


Figura 4. Circuito con 5 elementi e 4 nodi.

LA LEGGE DI KIRCHHOFF DELLE TENSIONI (LKT) afferma che per una qualsiasi sequenza chiusa di nodi la somma algebrica delle tensioni (tra due nodi successivi) è nulla.

Con riferimento al circuito della figura 4, applicando la LKT alla sequenza chiusa di nodi ABCA si ottiene la seguente equazione:

$$v_{AB} + v_{BC} + v_{CA} = 0 \tag{4}$$

Le <u>tensioni di nodo</u> (o potenziali di nodo) di un circuito sono le tensioni di tutti i nodi rispetto ad un nodo assunto come riferimento, la cui scelta è arbitraria (ma a cui solitamente si attribuisce un valore nullo). La LKT permette di esprimere la tensione tra una qualsiasi coppia di nodi del circuito come differenza delle relative tensioni di nodo: con riferimento alla figura 4, supponendo di scegliere il nodo A come nodo di riferimento (e posto dunque $e_A = 0$), ed indicando con e_B ed e_C le tensioni di nodo dei nodi B e C ($e_B = v_{BA}$; $e_C = v_{CA}$) la equazione (4) permette di scrivere:

$$v_{BC} = e_B - e_C \tag{5}$$

La sequenza chiusa di nodi ABCDA individua un percorso chiuso attraverso i componenti del circuito: i tratti di tale percorso all'interno di ciascun componente vengono detti <u>rami</u> ed il percorso, <u>maglia</u>. Applicando la LKT alla maglia ABCDA, tenendo conto dei versi positivi scelti per le tensioni ai capi dei componenti (tensioni di ramo) e del verso di circuitazione della maglia, si ottiene la seguente relazione:

$$v_2 - v_3 - v_4 + v_1 = 0 (6)$$

La LKT applicata ad una maglia del circuito afferma che la somma algebrica delle tensioni di ramo (sui rami che compongono la maglia) è nulla.

La LEGGE DI KIRCHHOFF DELLE CORRENTI (LKC) afferma che per ogni superficie chiusa che interseca unicamente le connessioni tra i componenti, e non i componenti stessi, la somma algebrica delle correnti che attraversano la superficie è nulla.

Si consideri in primo luogo una superficie chiusa che racchiuda al suo interno solo un bipolo (vedi figura 5a).

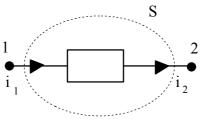


Fig. 5a. Legge di Kirchhoff delle correnti applicata ad un bipolo.

La corrente i_1 entra nella superficie indicata con la linea tratteggiata S nella figura, mentre la corrente i_2 esce da tale superficie (di solito si assumono positive le correnti uscenti e negative quelle entranti); la LKC afferma quindi che deve essere $i_2 - i_1 = 0$, da cui segue che: $i_2 = i_1$. Tenendo conto di ciò, con riferimento alla figura 5b si consideri la superficie chiusa la cui rappresentazione nel piano del disegno è la linea tratteggiata S_1 .

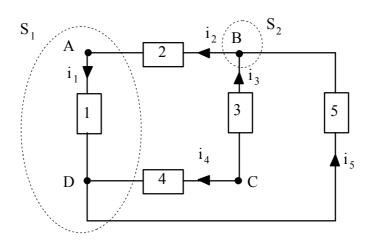


Figura 5b.

Le correnti che attraversano tale superficie sono la corrente i_2 e la corrente i_4 che entrano nella superficie e la corrente i_5 che esce, per cui la LKC applicata a tale superficie permette di scrivere la seguente equazione:

$$-i_2 - i_4 + i_5 = 0 (7)$$

Si consideri la superficie chiusa la cui rappresentazione nel piano della figura 5b è la linea tratteggiata S_2 : tale superficie racchiude al suo interno solo il nodo B e la LKC ad essa associata afferma che la somma algebrica delle correnti dei rami che convergono nel nodo B è nulla:

$$i_2 - i_3 - i_5 = 0 (8)$$

Applicando la LKC a tutti i quattro nodi del circuito di figura 5.b, ottiene quindi il seguente sistema di equazioni:

Come è immediato verificare, la somma delle equazioni porta ad una identità (0 = 0). Tale risultato generale è dovuto la fatto che ogni corrente di ramo i_k compare esattamente due volte, con segni opposti, nelle LKC relative ai nodi che sono i terminali del ramo k. Una delle equazioni è dunque una combinazione lineare delle altre N-1=3, e si può omettere. Le rimanenti N-1=3 equazioni sono chiaramente indipendenti in quanto, qualunque sia l'equazione omessa (ad esempio la quarta, nodo D), tutte le correnti di ramo presenti nell'equazione eliminata compaiono *una sola volta* nelle restanti equazioni (ad esempio i_1 , i_4 ed i_5). Le equazioni LKC indipendenti sono quindi N-1.

Le due leggi di Kirchhoff, delle tensioni e delle correnti, permettono di scrivere delle equazioni lineari tra le tensioni e le correnti che non dipendono dalla natura dei componenti presenti nel circuito, ma unicamente da come essi sono collegati tra di loro (topologia del circuito).

Sia dato un circuito caratterizzato da R rami ed N nodi (ad esempio per il circuito di figura 5.b, N = 4 ed R = 5). Per ciascun ramo si assumano versi positivi per la tensione di ramo e la corrente di ramo <u>associati secondo la scelta dell'utilizzatore</u>, ossia quando la corrente entra nel terminale positivo (vedi fig. 6.a). I versi di riferimento associati secondo la scelta del generatore sono illustrati nella figura 6.b, in cui la corrente esce dal terminale positivo.

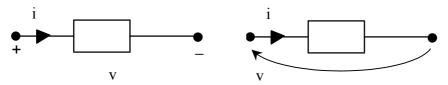


Fig. 6.a Versi di riferimento associati secondo la scelta dell'utilizzatore per la tensione e la corrente di ramo. A destra, l'indicazione del "-" e del "+" è sostituita da una freccia che indica il terminale positivo.

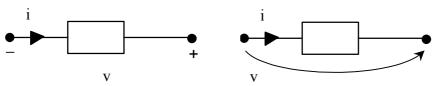


Fig. 6.b Versi di riferimento associati secondo la scelta del generatore per la tensione e la corrente di ramo. A destra, l'indicazione del "-" e del "+" è sostituita da una freccia che indica il terminale positivo.

Preso arbitrariamente un nodo come nodo di riferimento del circuito, la LKT permette di scrivere R relazioni del tipo (5) linearmente indipendenti che in forma matriciale assumono la forma:

$$\mathbf{v} = \mathbf{M} \mathbf{e} \tag{9}$$

dove \mathbf{v} è il vettore delle tensioni di ramo, \mathbf{e} è il vettore delle tensioni di nodo ed \mathbf{M} è una matrice avente R righe ed (N-1) colonne, il cui generico elemento M_{hk} risulta nullo se il ramo h non è collegato al nodo k, uguale a + 1 se la corrente del ramo h esce dal nodo k, - 1 se la corrente del ramo h entra nel nodo k. A titolo di esempio si consideri ancora il circuito di figura 5.b, utilizzando versi di riferimento associati secondo la scelta dell'utilzzatore per le tensioni e le correnti di ramo e prendendo D come nodo di riferimento ($\mathbf{e}_D = 0$). Si ha quindi:

$$\begin{cases} \mathbf{v}_1 = \mathbf{e}_{\mathbf{A}} \\ \mathbf{v}_2 = \mathbf{e}_{\mathbf{B}} - \mathbf{e}_{\mathbf{A}} \\ \mathbf{v}_3 = \mathbf{e}_{\mathbf{C}} - \mathbf{e}_{\mathbf{B}} \Rightarrow \\ \mathbf{v}_4 = \mathbf{e}_{\mathbf{C}} \\ \mathbf{v}_5 = -\mathbf{e}_{\mathbf{B}} \end{cases} = \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_4 \\ \mathbf{v}_5 \end{bmatrix} = \begin{bmatrix} +1 & 0 & 0 \\ -1 & +1 & 0 \\ 0 & -1 & +1 \\ 0 & 0 & +1 \\ 0 & -1 & 0 \end{bmatrix} \triangleq \mathbf{M} = \begin{bmatrix} +1 & 0 & 0 \\ -1 & +1 & 0 \\ 0 & -1 & +1 \\ 0 & 0 & +1 \\ 0 & -1 & 0 \end{bmatrix}$$

La LKC applicata a tutti i nodi tranne quello di riferimento permette di scrivere (N-1) equazioni del tipo (8) che in forma matriciale assumono la forma:

$$\mathbf{A} \, \mathbf{i} = \mathbf{0} \tag{10}$$

dove i è il vettore delle correnti di ramo ed A è una matrice, chiamata matrice di incidenza ridotta, avente (N-1) righe ed R colonne, il cui generico elemento A_{hk} risulta nullo se il ramo k non è collegato al nodo k, uguale a +1 se la corrente del ramo k esce dal nodo k, –1 se la corrente del ramo k entra nel nodo k. A titolo di esempio si consideri ancora il circuito di figura 5.k. Si ha quindi:

$$\begin{cases} i_{1} - i_{2} = 0 \\ i_{2} - i_{3} - i_{5} = 0 \\ i_{3} + i_{4} = 0 \end{cases} \Rightarrow \begin{bmatrix} +1 & -1 & 0 & 0 & 0 \\ 0 & +1 & -1 & 0 & -1 \\ 0 & 0 & +1 & +1 & 0 \end{bmatrix} \begin{bmatrix} i_{1} \\ i_{2} \\ i_{3} \\ i_{4} \\ i_{5} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \qquad \mathbf{A} = \begin{bmatrix} +1 & -1 & 0 & 0 & 0 \\ 0 & +1 & -1 & 0 & -1 \\ 0 & 0 & +1 & +1 & 0 \end{bmatrix}$$

Risulta quindi dalle definizioni che M è la trasposta di A, cioè:

$$\mathbf{M} = \mathbf{A}^{\mathrm{T}} \tag{11}$$

Dalle equazioni (9), (10) ed (11) segue il **TEOREMA DI TELLEGEN** che afferma che, per un dato circuito, preso un qualsiasi vettore di tensioni di ramo \mathbf{v}_1 , che soddisfi le LKT (9) per quel circuito, ed un vettore di correnti di ramo \mathbf{i}_2 , che soddisfi le LKC (10) per quel circuito, allora vale la seguente relazione:

$$\mathbf{v_1}^{\mathsf{T}} \mathbf{i_2} = 0 \tag{12}$$

Infatti, si ha

$$\mathbf{v}_1^T \mathbf{i}_2 = (\mathbf{M} \ \mathbf{e}_1)^T \mathbf{i}_2 = \mathbf{e}_1^T \ \mathbf{M}^T \mathbf{i}_2 = \mathbf{e}_1^T \ \mathbf{A} \mathbf{i}_2 = \mathbf{e}_1^T \ \mathbf{0} = 0$$

Facendo riferimento a versi di tensione e corrente associati secondo la scelta dell'utilizzaztore (fig. 6), si definisce **potenza elettrica assorbita** da un bipolo in un generico istante t, il prodotto tra la tensione presente ai suoi terminali all'istante t e la corrente che lo attraversa in quell'istante:

$$p(t) = v(t) i(t)$$
 (13)

Infatti, dalle definizioni di i = dq/dt e di v = dw/dq, si ha v i = (dw/dq)(dq/dt) = dw/dt = p. Nel caso in cui i versi della tensione e della corrente siano associati secondo la scelta del generatore, il prodotto vi definisce la potenza elettrica erogata dal bipolo.

Più in generale, facendo riferimento ad un generico componente con N terminali, la potenza elettrica assorbita da tale componente in un generico istante t è data dalla seguente espressione:

$$p(t) = \sum_{k=1}^{N-1} v_{kN}(t) i_k(t)$$
 (13.a)

dove si è preso l'ennesimo terminale come terminale di riferimento per le tensioni ed i versi positivi delle correnti sono tutti entranti nell'elemento. Si dimostra che la potenza elettrica assorbita non dipende dalla scelta del terminale di riferimento, infatti, facendo uso delle leggi di Kirchhoff delle tensioni prima e della legge di Kirchhoff delle correnti poi si ottiene:

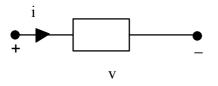
$$p' = \sum_{k=l,k\neq j}^{N} v_{kj} i_k = \sum_{k=l,k\neq j}^{N} (v_{kN} - v_{jN}) i_k = \sum_{k=l,k\neq j}^{N} v_{kN} i_k + v_{jN} i_j = p$$
(13.b)

Se si applica il teorema di Tellegen (12) considerando il vettore delle tensioni ed il vettore delle correnti che effettivamente sono presenti nel circuito ad un generico istante t, si ottiene la relazione (14) che, sulla base della definizione (13), mostra come la potenza elettrica assorbita da tutti i componenti del circuito risulti in ogni istante nulla.

$$\mathbf{v}(t)^{\mathrm{T}}\mathbf{i}(t) = \mathbf{v}_{1}(t) \ \mathbf{i}_{1}(t) + \mathbf{v}_{2}(t) \ \mathbf{i}_{2}(t) + \dots = \mathbf{p}_{1}(t) + \mathbf{p}_{2}(t) + \dots = 0 \tag{14}$$

3. COMPONENTI

Nel seguito vengono descritte e discusse le equazioni costitutive e le proprietà fondamentali di alcuni tra i componenti di impiego più diffuso in elettrotecnica. In generale i componenti sono caratterizzati da una relazione (caratteristica o equazione costitutiva) tra la corrente che li attraversa e la tensione tra i loro terminali^(o). Un componente in cui sia determinabile la tensione nota la corrente si dice *controllato in corrente* (cioè, è possibile alimentarlo con un generatore di corrente con corrente impressa qualsiasi [definito nel seguito] e ad ogni valore della corrente impressa corrisponde un solo valore della tensione ai terminali); analogamente, un componente in cui sia determinabile la corrente nota la tensione si dice *controllato in tensione* (cioè, è possibile alimentarlo con un generatore di tensione con tensione impressa qualsiasi [definito nel seguito] e ad ogni valore della tensione impressa corrisponde un solo valore della corrente assorbita). Infine, si premette che due componenti si dicono equivalenti quando presentano la stessa caratteristica tensione-corrente (anche se hanno una struttura interna differente).



Caratteristica del componente: f(i, v) = 0

Se il componente è *controllato in corrente*: v = h(i)

Se il componente è *controllato in tensione*: i = g(v)

Teoria dei circuiti - 7

⁽o) Il tempo può comparire esplicitamente nella relazione caratteristica. In tal caso il componente è detto *tempo-variante*, altrimenti il componente è detto *tempo-invariante*. Tutti i componenti trattati nel seguito sono tempo-invarianti.

Resistore lineare

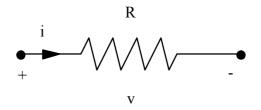


Figura 7 Simbolo del resistore lineare

Il simbolo del resistore lineare è indicato nella figura 7. Con riferimento alla scelta dell'utilizzatore per i versi positivi di tensione e corrente, la legge costitutiva del resistore è la seguente:

$$v = R i ag{15.a}$$

o, alternativamente

$$i = G v ag{15.b}$$

dove R è una costante chiamata resistenza (misurata in Ω [Ohm]), G è una costante chiamata conduttanza (misurata in S [Siemens]) e risulta G = 1/R. L'espressione della potenza elettrica assorbita segue dalla (13) e risulta:

$$p = v i = (R i) i = R i^2 = i^2/G$$
 (16.a)

o, alternativamente

$$p = v i = v (v/R) = v^2/R = G v^2$$
 (16.b)

Se la resistenza R è positiva, la potenza elettrica assorbita risulta essere sempre positiva, o al più nulla quando la corrente è nulla; i componenti che godono di tale proprietà vengono detti **componenti passivi**. Facendo ricorso alle conoscenze della fisica, si può dimostrare che un filo di rame di lunghezza L e sezione S può essere modellato per mezzo di un resistore di resistenza R pari a $\rho L/S$, in cui la potenza elettrica assorbita viene trasformata in energia termica mediante un fenomeno noto come "effetto Joule".

Dalla (15.a) segue che se è nota la corrente che circola sul resistore è nota anche la tensione ai suoi capi; quindi il resistore è un componente controllato in corrente. Inoltre, se R è diversa da zero, quando è nota la tensione è anche nota la corrente, pari a v/R; quindi il resistore è anche un componente controllato in tensione. Pertanto, il resistore non nullo risulta un componente controllato sia in tensione che in corrente.

La connessione ideale, illustrata nella figura 3 ed anche chiamata corto circuito, può essere considerata un resistore lineare di resistenza nulla (o conduttanza infinita). Come tale risulta essere un componente controllato in corrente, ma non in tensione; infatti ad un unico valore di tensione (zero) corrispondono infiniti valori possibili della corrente. Viceversa, un circuito aperto, il cui simbolo è rappresentato nella figura 8, può essere considerato come un resistore di resistenza infinita (o conduttanza zero) e come tale è un componente controllato in tensione, ma non in corrente: infatti all'unico valore possibile della corrente (zero) corrisponde una infinità di valori possibili della tensione ai suoi capi.

Figura 8 Simbolo del circuito aperto (i = 0)

Due resistori si dicono <u>collegati in serie</u> quando sono percorsi dalla stessa corrente (figura 9); dalle equazioni costitutive dei due resistori si vede che essi sono equivalenti ad un unico resistore

avente una resistenza equivalente pari alla somma delle due resistenze. La relazione ottenuta è generalizzabile ad un numero qualsiasi di resistori in serie (per definizione tutti percorsi dalla stessa corrente): $R_{eq} = \Sigma_k R_k$.

$$i + V_{1} - V_{2} - V_{2} - V_{3} - V_{4} - V_{5} -$$

Figura 9 Resistori collegati in serie

Due resistori si dicono <u>collegati in parallelo</u> quando la tensione ai loro capi è la stessa (figura 10); dalle equazioni costitutive dei due resistori si vede che essi sono equivalenti ad un unico resistore avente una resistenza equivalente il cui inverso è dato dalla somma degli inversi delle due resistenze (ovvero, ricordando la definizione di conduttanza, due resistori in parallelo sono equivalenti ad un unico resistore avente una conduttanza equivalente pari alla somma delle due conduttanze: $G_{eq} = G_1 + G_2$.) La relazione ottenuta è generalizzabile ad un numero qualsiasi di resistori in parallelo (per definizione tutti soggetti alla stessa tensione): $G_{eq} = \Sigma_k G_k$.

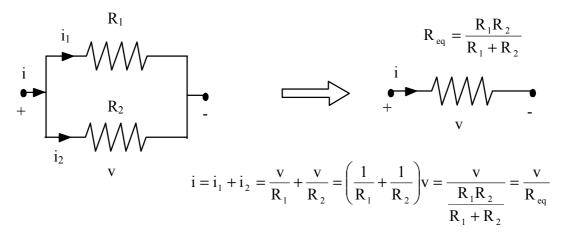


Figura 10 Resistori collegati in parallelo

Diodo ideale

Il simbolo del diodo ideale è indicato nella figura 11. La legge costitutiva del diodo ideale è rappresentata, nel piano tensione - corrente, dal semiasse negativo delle tensioni e dal semiasse positivo delle correnti (vedi figura 12): se la tensione anodo (A) - catodo (K) è negativa, si dice che il diodo è polarizzato in inversa, in questo caso il passaggio della corrente è interdetto (per qualunque valore di tensione); viceversa, se il diodo è percorso da corrente (diodo in conduzione) la tensione ai suoi capi è nulla (per qualunque valore di corrente).

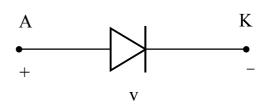
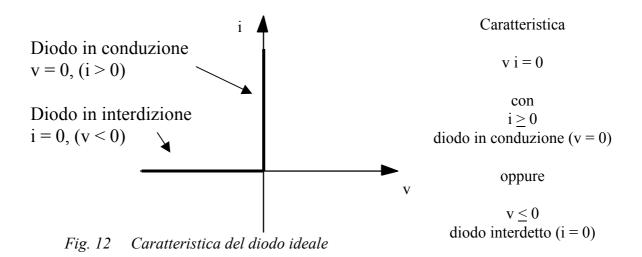


Figura 11 Simbolo del diodo ideale



Come si può vedere dalla caratteristica del diodo, il diodo non è controllato né in corrente, perché quando la corrente è nulla la tensione può assumere una infinità di valori (tutti quelle negativi), ne in tensione, perché quando la tensione è nulla la corrente può assumere una infinità di valori, tutti quelli positivi. A seconda quindi che il diodo ideale sia polarizzato in diretta od in inversa, può essere considerato rispettivamente un corto circuito od un circuito aperto; in ogni caso la potenza elettrica assorbita dal diodo è nulla.

Un diodo reale è generalmente realizzato a partire da un cristallo di materiale semiconduttore (ad esempio Si, appartenente al IV gruppo della tavola periodica degli elementi) drogandolo con impurità d tipo p (ad esempio B, appartenente al III gruppo) e di tipo n (ad esempio P, appartenente al V gruppo), come illustrato nella figura 13. La caratteristica tensione - corrente della giunzione p-n così ottenuta è rappresentata, nella figura 13. Nella sua espressione analitica, sempre riportata nella figura 13, k è la costante di Boltzman (1.38×10⁻²³ J/K), T la temperatura in K, q la carica (in modulo) dell'elettrone $(1.602\times10^{-19} \text{ C})$ ed I_0 la corrente inversa di saturazione, che è una corrente (tipicamente molto piccola) caratteristica dispositivo. Quando il diodo reale è in conduzione, è presente ai suoi capi una tensione positiva (V_d) ed il diodo reale assorbe una modesta potenza elettrica dalla rete cui è collegato. Quando il diodo è polarizzato in inversa, fintanto che la tensione è inferiore, in valore assoluto, ad un valore limite (tensione di rottura o breakdown V_b) circola una piccola corrente inversa (dal catodo all'anodo) (I₀). Pertanto, anche in interdizione il diodo reale assorbe una potenza di modesta entità. Al superamento, in valore assoluto, della tensione di breakdown il diodo danneggia irreparabilmente, consentendo circolazione di una ingente corrente inversa. Il diodo reale può essere considerato come un resistore non lineare, la cui resistenza è una funzione della corrente.

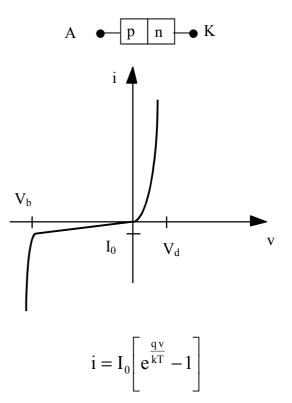


Fig. 13 Struttura e caratteristica di un diodo reale

Induttore lineare

Si definisce induttore lineare un componente a due terminali il cui simbolo è indicato nella figura 14 caratterizzato dalla seguente legge costitutiva:

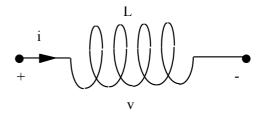


Figura 14 Simbolo dell'induttore

$$v = L \frac{di}{dt} \tag{17}$$

dove L è una costante chiamata induttanza dell'induttore (misurata in H). L'espressione della potenza elettrica assorbita segue dalla (13) e risulta:

$$p = vi = L\frac{di}{dt}i = \frac{d}{dt}\left(\frac{1}{2}Li^2\right)$$
 (18)

La (18) mostra come tutta la energia elettrica assorbita dall'induttore vada ad incrementare il termine $E_m = \frac{1}{2} L i^2$ che assume quindi il significato di energia magnetica immagazzinata nell'induttore; tale energia, una volta immagazzinata, può essere interamente restituita ai componenti del circuito cui è collegato l'induttore durante un transitorio successivo. La potenza elettrica assorbita dall'induttore può quindi assumere valori sia positivi che negativi.

Un avvolgimento costituito da N spire finemente avvolte sopra un nucleo toroidale di materiale ferromagnetico dolce, qualora l'intensità della corrente che lo percorre non sia troppo elevata, in modo da poter trascurare la saturazione del materiale ferromagnetico, può essere modellato come un resistore ed un induttore collegati in serie (vedi fig. 15).

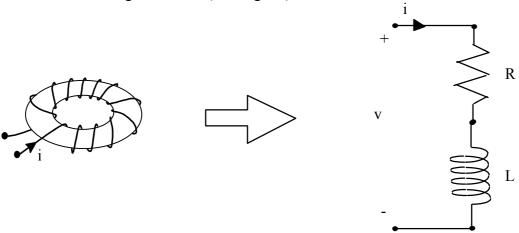


Figura 15 Induttore reale

Il campo magnetico H prodotto dalla corrente i, a causa dell'elevato valore della permeabilità magnetica (μ) del materiale di cui è costituito il nucleo toroidale dell'avvolgimento, tende a concentrarsi in tale regione. Si può dimostrare che, trascurando i flussi dispersi, il valore della induttanza dell'induttore è definito dalla relazione:

$$\frac{1}{2} \operatorname{L} i^2 = \int_{V_{\text{toro}}} \frac{1}{2} \mu \, H^2 \, dV \tag{19}$$

La potenza elettrica assorbita dall'induttore reale, viene in parte trasformata in energia termica per effetto Joule ed in parte immagazzinata nel campo magnetico presente all'interno del nucleo toroidale. Per sottolineare il fatto che alla energia elettromagnetica E_m è associato un campo magnetico, tale energia viene più specificatamente chiamata energia magnetica immagazzinata nell'induttore.

L'equazione costitutiva dell'induttore (17) permette in ogni istante, se è noto il valore della tensione ai suoi capi, di calcolare la derivata temporale della corrente che lo attraversa lasciandone però completamente indeterminato il valore. Il valore della corrente individua univocamente l'energia magnetica immagazzinata nell'induttore e dipende dal transitorio subìto dalla corrente nel periodo precedente all'istante di tempo che si considera. Infatti, integrando nel tempo la (17), supponendo che all'istante $-\infty$, quando è stato assemblato il circuito ed è iniziato il transitorio, la corrente sull'induttore fosse nulla, si ottiene:

$$i(t) = \frac{1}{L} \int_{-\infty}^{t} v(\tau) d\tau$$
 (20)

La (20) mostra che il valore della corrente all'istante t dipende dal valore della tensione in tutti gli istanti precedenti. Per indicare ciò si dice che l'induttore è un componente dotato di memoria. Il valore della corrente che attraversa l'induttore individua univocamente l'energia magnetica immagazzinata al suo interno e perciò costituisce la sua variabile di stato.

Condensatore lineare

Il simbolo del condensatore è indicato nella figura 16, la sua legge costitutiva è la seguente:

$$i = C \frac{dv}{dt}$$
 (21)

dove C è una costante chiamata capacità del condensatore (misurata in F).

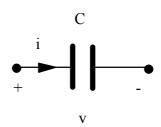


Figura 16 Simbolo del condensatore

L'espressione della potenza elettrica assorbita segue dalla (13) e risulta:

$$p = vi = vC\frac{dv}{dt} = \frac{d}{dt}\left(\frac{1}{2}Cv^2\right)$$
 (22)

La (22) mostra come tutta la energia elettrica assorbita dall'induttore vada ad incrementare il termine $E_e = \frac{1}{2} C v^2$ che assume quindi il significato di energia elettromagnetica immagazzinata nel condensatore; tale energia, una volta immagazzinata, può essere interamente restituita ai componenti del circuito cui è collegato il condensatore durante un transitorio successivo. La potenza elettrica assorbita dal condensatore può quindi assumere valori sia positivi che negativi.

Un cilindro ed una corona cilindrica coassiali, costituiti di materiale conduttore, separate da una corona cilindrica, coassiale con le precedenti, costituita di materiale isolante, formano un condensatore cilindrico che può essere modellato con buona approssimazione mediante un condensatore ideale (vedi fig. 17).

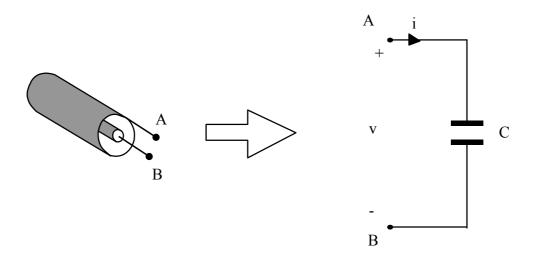


Figura 17 Condensatore cilindrico

Quando una carica q viene spostata tramite una connessione elettrica dalla armatura esterna (collegata al terminale A) a quella interna (collegata al terminale B), la regione di spazio occupata dall'isolante interposto tra le armature del condensatore è sede di un campo elettrico. Trascurando il campo elettrico all'esterno di tale regione, il valore della capacità del condensatore è definito dalla relazione:

$$\frac{1}{2} \operatorname{C} v^2 = \int_{V_{\text{isolante}}} \frac{1}{2} \varepsilon \operatorname{E}^2 dV$$
 (23)

dove ϵ è la costante dielettrica dell'isolante. La potenza elettrica assorbita dal condensatore cilindrico viene immagazzinata nel campo elettrico presente nell'isolante tra le armature del condensatore. Per sottolineare il fatto che alla energia elettromagnetica E_e è associato un campo elettrico, tale energia viene più specificatamente chiamata energia elettrica immagazzinata nel condensatore.

Le relazioni (21, 22, 23) mostrano come esista una relazione di dualità tra il condensatore e l'induttore; infatti è possibile ottenere le relazioni caratteristiche di un componente da quelle dell'altro, scambiando tra di loro i simboli della tensione con la corrente, dell'induttanza con la capacità, del campo magnetico con il campo elettrico e della permeabilità magnetica con la costante dielettrica.

Analogamente all'induttore, anche il condensatore è un componente con memoria; integrando la (21) dall'istante $-\infty$, in cui è stato assemblato il circuito ed in cui la tensione ai capi del condensatore si è supposta nulla, al generico istante t si ottiene:

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) d\tau$$
 (24)

La (24) mostra che il valore della tensione in un generico istante t dipende dal valore della corrente in tutti gli istanti precedenti. Il valore della tensione ai capi del condensatore individua univocamente l'energia elettrica immagazzinata al suo interno e perciò rappresenta la sua variabile di stato. Infine, dalla 24, si riconosce anche che la carica Q presente sull'armatura positiva (cioè quella collegata al termale positivo) è legata alla tensione v dalla relazione Q = C v.

Generatore di tensione

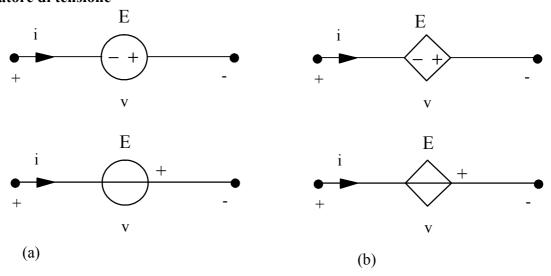


Figura 18 Sim boli del generatore di tensione

I simboli che vengono utilizzati per il generatore indipendente di tensione sono indicati nella figura 18a, quelli utilizzati per il generatore di tensione pilotato (o dipendente) nella figura 18b (i due simboli vengono usati nella letteratura scientifica con uguale frequenza e sono del tutto equivalenti);. Nel caso del generatore di tensione indipendente, la tensione impressa E del generatore (o forza elettro-motrice del generatore) è una funzione nota del tempo, nel caso del generatore di tensione pilotato, la tensione impressa dipende dal valore della tensione (generatore di tensione pilotato in tensione: GTPT) o della corrente (generatore di tensione pilotato in corrente: GTPC) di un altro ramo del circuito. Con riferimento ai versi positivi delle grandezze indicati nella figura 18a, l'equazione costitutiva del generatore di tensione indipendente è la seguente:

$$\mathbf{v} = -\mathbf{E} \tag{25}$$

In figura sono illustrati i generatori pilotati GTPT e GTPC aventi caratteristica lineare.

Caratteristica: $v = -k v_p$ Caratteristica: $v = -k i_p$

L'espressione della potenza elettrica assorbita segue dalla (13) e risulta:

$$p = v i = -E i \tag{26}$$

La potenza elettrica assorbita risulta quindi positiva o negativa a seconda che la corrente attraversi il generatore nel verso associato o non associato secondo la convenzione degli utilizzatori rispetto a quello della tensione impressa. Il generatore indipendente di tensione è quindi in grado di assorbire od erogare, in dipendenza dalle condizioni di lavoro del circuito, una potenza elettrica di valore qualsiasi, mantenendo comunque inalterato il valore della tensione ai suoi capi. Il generatore indipendente di tensione è un componente controllato in corrente. Il generatore dipendente di tensione non è un componente controllato né in tensione né in corrente.

Una batteria (generatore di tensione reale) può essere modellata elettricamente mediante lo schema illustrato nella figura 19, costituito da un resistore e da un generatore indipendente di tensione collegati in serie.

Figura 19a Modello circuitale di una batteria

Il generatore di tensione permette di simulare la trasformazione di energia chimica in elettrica e viceversa che avviene all'interno della batteria; la tensione impressa E_0 è pari alla tensione ai capi della batteria durante il funzionamento a vuoto (quando non eroga corrente). La resistenza R_i del resistore, viene detta resistenza interna della batteria e permette di simulare la dissipazione di energia elettrica, per effetto Joule, in calore che viene ceduto all'ambiente circostante, che accompagna il passaggio della corrente nella batteria. A questa dissipazione è associata una caduta di tensione. La caratteristica tensione-corrente del bipolo di figura 19a è illustrata in figura 19b. Il generatore di tensione reale (la batteria) è un componente controllato sia in tensione che in corrente.

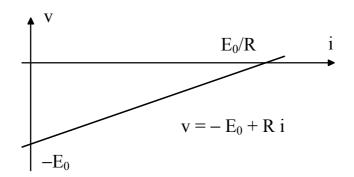


Figura 19b Caratteristica tensione-corrente di un generatore di tensione reale (batteria).

Generatore di corrente

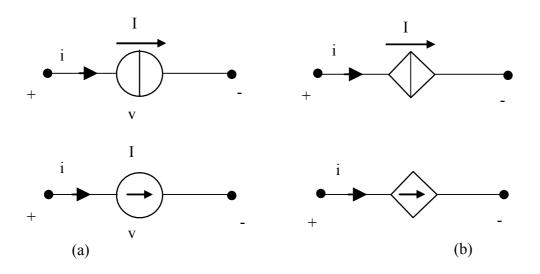


Figura 20 Simboli del generatore di corrente

I simboli che vengono utilizzati per il generatore indipendente di corrente sono indicati nella figura 20a, quelli che vengono utilizzati per il generatore di corrente pilotato (o dipendente) nella figura 20b (i due simboli vengono usati nella letteratura scientifica con uguale frequenza e sono del tutto equivalenti). Nel caso del generatore indipendente la corrente impressa (I) è una funzione nota del tempo, mentre nel caso del generatore pilotato dipende da un'altra grandezza che può essere la corrente (generatore di corrente pilotato in corrente: GCPC) o la tensione (generatore di corrente pilotato in tensione: GCPT) di un altro componente del circuito. Con riferimento ai versi positivi delle grandezze indicati nella figura, l'equazione costitutiva del generatore di corrente è la seguente:

$$i = I \tag{27}$$

In figura sono illustrati i generatori pilotati GCPT e GCPC aventi caratteristica lineare.

Caratteristica: $i = k v_p$ Caratteristica: $i = k i_p$

L'espressione della potenza elettrica assorbita segue dalla (13) e risulta:

$$p = v i = v I \tag{28}$$

La potenza elettrica assorbita risulta quindi positiva o negativa a seconda che la tensione ai capi del generatore abbia verso associato o non associato (secondo la convenzione degli utilizzatori) rispetto a quello della corrente impressa. Il generatore indipendente di corrente è quindi in grado di assorbire od erogare, in dipendenza dalle condizioni di lavoro del circuito, una potenza elettrica di valore qualsiasi, mantenendo comunque inalterato il valore della corrente che lo attraversa. Il generatore indipendente di corrente è un componente controllato in tensione. Il generatore dipendente di corrente non è un componente controllato né in tensione né in corrente.

A differenza dei componenti visti in precedenza, non esiste un componente elettrico reale che venga modellato elettricamente, con buona approssimazione, da un solo generatore di corrente. Il generatore di corrente interviene invece nel circuito elettrico equivalente dei dispositivi elettronici. Ad esempio, è possibile realizzare un circuito complesso che modella un transistore npn in cui sono presenti due generatori di corrente pilotati in corrente.

Transistore

Il transistore è un componente con tre terminali che viene ampiamente utilizzato nei dispositivi elettronici sia per la elaborazione dei segnali (ad esempio negli amplificatori), sia per la conversione statica dell'energia (ad esempio negli inverter). Esistono diverse tipologie di transistore con caratteristiche costruttive ed operative diverse; nel seguito viene illustrato il transistore bipolare a giunzione (BJT). Il BJT è costituito a partire da un cristallo di semiconduttore, tipicamente silicio, in cui sono ottenute tre regioni a drogaggio differente, come mostrato nella figura 21, collegate ad altrettanti terminali chiamati collettore (C), emettitore (E) e base (B). La figura 21a fa riferimento al transistore n-p-n, la figura 21b al transistore p-n-p

Figura 21a Struttura e simbolo del transistore bipolare a giunzione del tipo n-p-n

Figura 21b Struttura e simbolo del transistore bipolare a giunzione del tipo p-n-p

La figura 22 mostra un possibile circuito equivalente del transistore BJT n-p-n; tale circuito, mediante l'introduzione di due generatori controllati è costituito da soli bipoli.

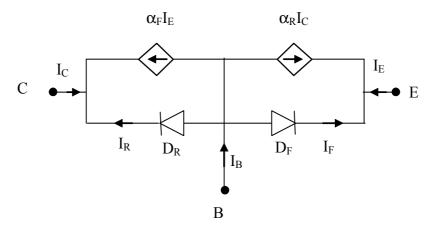


Figura 22 Un circuito elettrico equivalente del transistore bipolare a giunzione del tipo n-p-n

Quando la tensione tra base ed emettitore V_{BE} è positiva, e quella tra collettore ed emettitore V_{CE} è sufficientemente elevata, il transistore si trova nella regione attiva del suo funzionamento in cui il diodo D_R è interdetto ($I_R=0$) mentre il diodo D_F è polarizzto in diretta. Dall'applicazione della LKC al circuito equivalente della figura 22 si ottiene allora la seguente relazione che mostra come la corrente di collettore sia proporzionale alla corrente di base mediante un coefficiente β chiamato guadagno di corrente del transistore.

$$I_{C} = -\alpha_{F}I_{E} = -\alpha_{F}(-I_{C} - I_{B}) \implies I_{C} = \frac{\alpha_{F}}{1 - \alpha_{F}}I_{B} = \beta I_{B}$$

Valori tipici dei parametri α_F e α_R sono $0.90 \div 0.99$ e del parametro β (indicato anche con la sigla h_{FE}) (20÷200).

La figura 23 mostra una tipica curva caratteristica del transistore in cui si riporta la'andamento della corrente di collettore al variare della tensione tra collettore ed emettitore per diversi valori della corrente di base. Nella figura è anche mostrata la regione di saturazione, caratterizzata da un piccolo valore della tensione tra collettore ed emettitore, regione in cui viene usualmente impiegato il transistore nei dispositivi elettronici di potenza (inverter, chopper).

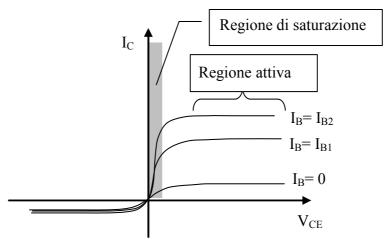


Figura 23 Caratteristica del transistore bipolare a giunzione del tipo n-p-n

Amplificatore operazionale ideale

L'amplificatore operazionale (A.O.) è un componente attivo (cioè in grado di erogare potenza), progettato per essere utilizzato con altri componenti circuitali in modo da ottenere specifiche operazioni di elaborazione delle variabili circuitali (segnale). Alcuni A.O. disponibili commercialmente possiedono più di sette terminali, altri meno. Per la maggior parte delle applicazioni, tuttavia, solo i cinque terminali indicati nel simbolo standard di figura 24.a sono essenziali (ingresso invertente, ingresso non invertente, uscita, morsetto + dell'alimentazione, morsetto – dell'alimentazione). I terminali aggiuntivi sono solitamente collegati ad alcuni circuiti esterni di compensazione per migliorare le prestazioni dell'A.O.. Le alimentazioni vengono utilizzate per polarizzare l'A.O.; in altri termini, le alimentazioni consentono l'instaurarsi di certe condizioni che sono essenziali al corretto funzionamento dell'A.O.. Dopo il collegamento dell'alimentazione e dopo che il circuito di compensazione è stato collegato ad ogni terminale aggiuntivo, solo quattro terminali restano disponibili per i collegamenti esterni. Quindi, dal punto di vista dell'analisi dei circuiti, l'A.O. è realmente un dispositivo a quattro terminali. Tale dispositivo è tracciato all'interno del triangolo tratteggiato di figura 24.b e sarà nel seguito indicato con il simbolo illustrato in figura 24.c^(*). In tale figura i₋ ed i₊ denotano rispettivamente le correnti entranti dal terminale invertente e da quello non invertente dell'A.O.. Analogamente v., v₊ e v₀ denotano la tensione rispetto a massa dei terminali +, – e uscita, rispettivamente. La tensione $v_d = v_+ - v_-$ è detta tensione d'ingresso differenziale.

_

 $^{^{(*)}}$ Il simbolo di A.O. che compare nella maggior parte della letteratura tecnica mostra solo tre terminali, poiché viene omesso il terminale di massa. Ciò è dovuto al fatto che il terminale di massa in figura 24.b non esiste fisicamente come piedino nella maggior parte dei moderni A.O. ma piuttosto viene creato esternamente tramite l'alimentazione. Si è preferito evidenziare esplicitamente il suddetto terminale perché altrimenti l'applicazione della LKC avrebbe fornito la relazione errata $i_1 + i_2 + i_3 = 0$.

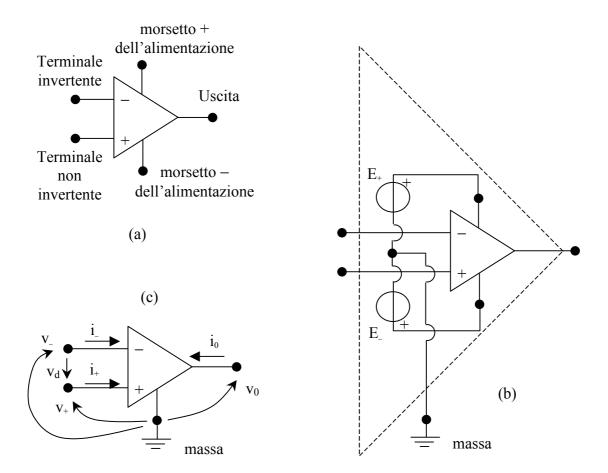


Figura 24 Amplificatore operazionale

Per ottenere un'esatta caratterizzazione di un A.O. sarebbe necessario analizzare l'intero dispositivo, la cui struttura è molto complessa. Fortunatamente per le applicazioni a bassa frequenza, si è trovato sperimentalmente che le correnti e le tensioni ai terminali dell'A.O. obbediscono alle seguenti relazioni approssimate:

$$\begin{cases} i_{-} = i_{+} = 0 \\ v_{0} = f(v_{d}) \end{cases}$$

Dove $f(v_d)$ denota la *caratteristica di trasferimento* da v_d a v_0 . Tale caratteristica di trasferimento è una funzione dispari della tensione d'ingresso differenziale, come illustrato in figura 25. Inoltre tale funzione è piuttosto insensibile alle variazioni della corrente di uscita i_0 . Si nota che:

- 1) in un intorno dell'origine (regione lineare) il rapporto tra tensione di uscita e tensione differenziale è circa costante: $v_0/v_d \approx A$. La costante A, tipicamente almeno 10^5 , viene detta guadagno di tensione in anello aperto.
- 2) All'aumentare, in modulo, della tensione differenziale la caratteristica satura a $v_0 = \pm E_{sat}$ (regioni di saturazione + e -, rispettivamente)

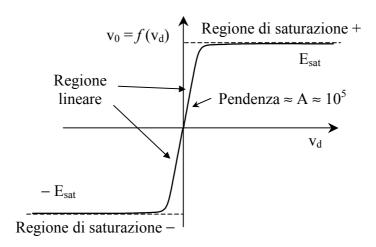


Figura 25 Caratteristica reale di un tipico A. O.

In considerazione dei valori tipici di A, la precisione si riduce poco assumendo per la caratteristica di trasferimento una rappresentazione lineare a tratti Tale semplificazione conduce al *modello di A.O. a guadagno finito* mostrato in figura 26.a e 26.b. Si nota che la caratteristica di trasferimento è stata approssimata con tre segmenti. A meno che non sia specificato diversamente, nel seguito si farà riferimento a tale modello di A.O..

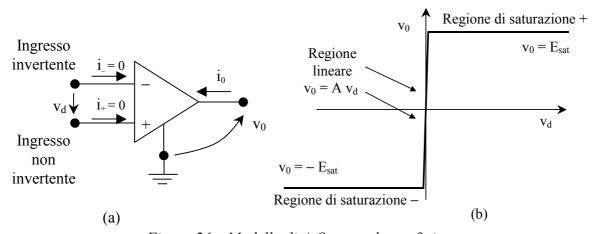


Figura 26 Modello di A.O. a guadagno finito

Il modello di A.O. a guadagno finito può essere descritto analiticamente come segue:

$$i = 0 (29.a)$$

$$i_{\perp} = 0 \tag{29.b}$$

(Regione di saturazione –)
$$v_0 = -E_{sat}$$
, $v_d < -E_{sat}/A$ (29.c)

(Regione di saturazione +)
$$v_0 = +E_{sat}$$
, $v_d > E_{sat}/A$ (29.e)

Poiché tali equazioni sono poco pratiche e difficili da manipolare analiticamente, è molto più pratico rappresentare ciascuna regione tramite un semplice *circuito equivalente*, come illustrato nelle figure 27.a, 27.b e 27.c. Si noti che i tre circuiti equivalenti contengono esattamente la stessa informazione della (29). In particolare, quando l'A.O. opera nella regione lineare (solitamente la condizione di progetto) si riduce a quello della figura 27.b, corrispondente alle (29.a), (29.b) e (29.d). In tal caso la tensione di uscita è proporzionale alla tensione d'ingresso differenziale in ogni istante ed il modulo della tensione di uscita è inferiore alla tensione di saturazione.

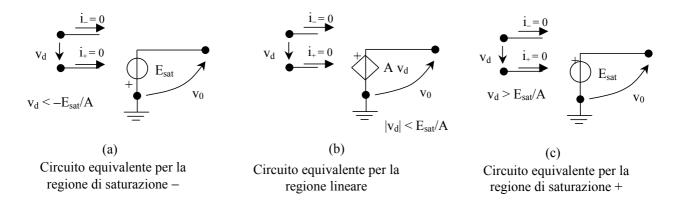


Figura 27 Circuiti equivalenti dell' A.O. a guadagno finito

In considerazione dei valori tipici di A, è spesso possibile assumere $A \to \infty$. Tale semplificazione conduce al *modello di A.O. ideale* mostrato in figura 28.a e 28.b. Per evidenziare che $A \to \infty$ nella regione lineare, si è aggiunto il simbolo ∞ all'interno del triangolo, distinguendo così il *simbolo di A.O. ideale* di figura 28.a da altri modelli. Si noti che quando l'A.O. ideale opera nella regione lineare la tensione d'ingresso differenziale è vincolata ad essere zero in ogni istante (*cortocircuito virtuale*) ed il modulo della tensione di uscita è inferiore alla tensione di saturazione.

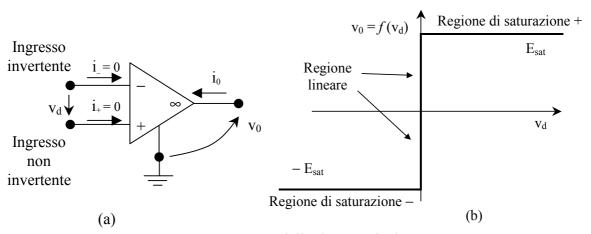


Figura 28 Modello di A.O. ideale.

Il trasformatore ideale

Il trasformatore ideale è un doppio bipolo il cui funzionamento è descritto dalle seguenti relazioni lineari:

$$\mathbf{v}_1 = \mathbf{K} \ \mathbf{v}_2 \tag{30.a}$$

$$i_2 = -K i_1$$
 (30.b)

Dove la costante K è detta rapporto di trasformazione. Il simbolo del trasformatore ideale è indicato nella figura 29. Si noti che in figura 29 una coppia di terminali è segnata con un punto, indicando quindi i versi di riferimento positivi delle tensioni e delle correnti per cui le equazioni costitutive (30) sono corrette. In figura 29 è mostrato inoltre uno dei possibili circuiti equivalenti del trasformatore ideale. Si noti anche che, poiché il trasformatore ideale è un componente ideale definito dalle (30), le relazioni tra tensioni e correnti a primario e secondario sono valide per tutte le forme d'onda (incluso quindi il regime stazionario). Il trasformatore ideale è indicato in letteratura anche con altri simboli, tuttavia, nel seguito si utilizzerà sempre il simbolo di figura 29, dato che il

simbolo alternativo è molto simile a quello che rappresenta gli induttori accoppiati (che saranno introdotti più avanti).

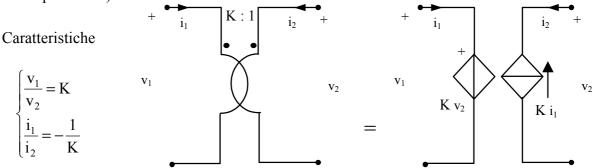


Figura 30 - Trasformatore ideale e circuito equivalente.

La potenza assorbita dal trasformatore ideale è nulla; infatti, con riferimento ai versi di riferimento positivi delle tensioni e delle correnti definiti in figura 29, si ha

$$p(t) = v_1(t)i_1(t) + v_2(t)i_2(t) = (Kv_2(t))\left(-\frac{i_2(t)}{K}\right) + v_2(t)i_2(t) = -v_2(t)i_2(t) + v_2(t)i_2(t) = 0$$

Quindi la somma delle potenze assorbite a primario e secondario è complessivamente nulla, ovvero la potenza assorbita a primario dal trasformatore ideale $(p_1 = v_1 i_1)$ risulta in ogni istante uguale a quella erogata al secondario $(p_2 = -v_2 i_2)$. Anche se non assorbe potenza, il trasformatore ideale muta i parametri (tensione e corrente) con cui la energia elettrica viene assorbita a primario ed erogata a secondario: la tensione viene ridotta (od aumentata) di un fattore pari al rapporto di trasformazione del trasformatore K mentre la corrente viene aumentata (o diminuita) dello stesso fattore.

Quando a secondario di un trasformatore ideale è collegato un resistore di resistenza R, il primario si comporta come un resistore di resistenza equivalente K²R. Tale equivalenza è illustrata nella figura 30 e prende il nome di "riduzione da secondario a primario". La dimostrazione è immediata:

$$v_1(t) = K \ v_2(t) = K \ [-R \ i_2(t)] = -KR \ [-K \ i_1(t)] = K^2 R \ i_1(t)$$
 v_1
 v_2
 v_1
 v_2
 v_2
 v_3
 v_4
 v_4
 v_4
 v_4
 v_4
 v_5
 v_6
 v_8
 v_8
 v_9
 $v_$

Figura 30 - Riduzione da secondario a primario.

SISTEMA INTERNAZIONALE DI GRANDEZZE E UNITÀ DI MISURA (SI)

Grandezze ed unità fondamentali					
Nome	Simbolo	Unità	Simbolo		
Lunghezza	l	metro	m		
Massa	m	kilogrammo	kg		
Intervallo di tempo	t	secondo	S		
Corrente elettrica	i	ampere	A		
Intervallo di temperatura	heta	kelvin	K		
Intensità Luminosa	I	candela	cd		
Quantità di materia	-	mole	mol		
Grandezze ed unità complementari					
Angolo piano	φ	radiante	rad		
Angolo solido	Ω	steradiante	sr		

Ogni grandezza derivata è espressa nella sua forma elementare da un monomio di grandezze precedentemente definite e può sempre essere ridotta ad un monomio di grandezze fondamentali e complementari. Le unità relative sono derivate dalle unità delle grandezze che compaiono nel monomio di definizione; talvolta le unità stesse hanno ricevuto un nome indipendente da quelle delle unità da cui sono derivate. Nella tabella successiva sono riportate alcune grandezze derivate e le loro unità, con particolare riferimento alle grandezze utili nell'elettrotecnica.

Multipli e sottomultipli nel SI				
Prefisso	Simbolo	Fattore		
Tera	T	10^{12}		
Giga	G	10 ⁹		
Mega	M	10^{6}		
Chilo	k	10^{3}		
Milli	m	10^{-3}		
Micro	μ	10^{-6}		
Nano	n	10^{-9}		
Pico	p	10^{-12}		

Grandezza e simbolo	Unità e simbolo	Definizione
Frequenza (f)	hertz (Hz)	$1 \text{ Hz} = 1 \text{ s}^{-1}$
Lavoro (L), Energia (W, E)	joule (J)	$1 J = 1 N \cdot m = 1 kg \cdot m^2/s^2$
Potenza (P)	watt (W)	$1 \text{ W} = 1 \text{ J/s} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^3$
Carica elettrica (q, Q)	coulomb (C)	$1 C = 1 A \cdot s$
Tensione elettrica (v)	volt (V)	$1 \text{ V} = 1 \text{ W/A} = 1 \text{ kg·m}^2/(\text{A·s}^3)$
Capacità (C)	farad (F)	$1 \text{ F} = 1 \text{ C/V} = 1 \text{ A}^2 \cdot \text{s}^4 / (\text{kg} \cdot \text{m}^2)$
Resistenza (R), Reattanza (X)	ohm (Ω)	$1 \Omega = 1 \text{ V/A} = 1 \text{ kg·m}^2/(\text{A}^2 \cdot \text{s}^3)$
Conduttanza (G), Ammettenza (Y)	siemens (S)	$1 \text{ S} = 1 \text{ A/V} = 1 \text{ A}^2 \cdot \text{s}^3 / (\text{kg} \cdot \text{m}^2)$
Flusso magnetico (ϕ, Φ)	weber (Wb)	$1 \text{ Wb} = 1 \text{ V} \cdot \text{s} = 1 \text{ kg} \cdot \text{m}^2 / (\text{A} \cdot \text{s}^2)$
Induzione magnetica (B)	tesla (T)	$1 \text{ T} = 1 \text{ Wb/m}^2 = 1 \text{ kg/(A·s}^2)$
Auto e Mutua induttanza (L), (M)	Henry (H)	$1 \text{ H} = 1 \text{ V} \cdot \text{s/A} = 1 \text{ kg} \cdot \text{m}^2 / (\text{A}^2 \cdot \text{s}^2)$
Pulsazione (ω)	rad/s	
Campo elettrico (E)	V/m	
Campo magnetico (H)	A/m	
Spostamento elettrico (D),	C/m ²	
Permittività (ε)	F/m	
Permeabilità (μ)	H/m	
Resistività (ρ)	$\Omega {\cdot} m$	
Potenza reattiva (Q)	VAr	Dimensionalmente uguale al W.
Potenza apparente (N)	voltampere (VA)	Dimensionalmente uguale al W.