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Abstract – In this paper the space vector approach is applied 
to the analysis of multi-phase electric systems. This ap-
proach builds on an existing but non systematic knowledge 
base, partially available in literature. In particular, power 
and RMS are expressed in terms of space vectors, and a 
comparison is carried out with respect to the Fortescue’s 
symmetrical components in the case of n-phase circuits with 
sinusoidal waveforms. The use of space vectors allows real 
time analysis and regulation of both multi-phase converters 
and multi-phase machines with an elegant and effective vec-
torial approach. 

I. INTRODUCTION

In 1918 Fortescue published a milestone paper on the 
AIEE entitled “Method of symmetrical coordinates ap-
plied to the solution of polyphase Networks” [1]. The 
proposed transformation soon became generally known 
as the method of symmetrical components, and it greatly 
facilitated the analysis of unbalanced three-phase sys-
tems. 

The Fortescue’s approach considers phasors, i.e., con-
stant complex numbers representing, in a compact form, 
the amplitude and the phase angle of sinusoidal quanti-
ties. In past decades a similar transformation has been 
widely applied to three-phase instantaneous variables, 
leading to the definition of space vectors, i.e., complex 
numbers moving in a plane usually called d-q plane [2], 
[3]. 

The space vector approach allows to simplify modeling 
and regulation of both the converter and the machine in 
traditional three-phase motor drive applications. How-
ever, when the machine is connected to an inverter sup-
ply, the need for a specific number of phases, such as 
three, disappears. On the other hand, the development of 
modern power electronic devices, makes it possible to 
consider the number of phases as a degree of freedom, 
i.e., as one of the design variables. 

Multi-phase motor drives have many advantages over 
the traditional three-phase motor drives such as reducing 
the amplitude and increasing the frequency of torque pul-
sations, reducing the rotor harmonic currents losses and 
lowering the dc link current harmonics. 

In addition, owing to their redundant structure, multi-
phase motor drives improve the system reliability. In par-
ticular, unlike in traditional three-phase systems, the fail-
ure of one or more phases in a multi-phase drive system 
does not prevent the machine from starting and running, 
even if with reduced performance. 

The use of multi-phase drives is considered also a pos-
sible solution to overcame the problems related to high-
power applications. In fact, in the past decades, multi-

level inverter-fed ac machines have emerged as a prom-
ising solution in achieving high power ratings with volt-
age limited devices. Similarly, the use of multi-phase in-
verters together with multi-phase ac machines has been 
recognized as a viable approach to obtain high power 
ratings with current limited devices [4]-[6]. 

Furthermore, the spatial harmonic components of the 
air gap flux density can be usefully utilized in order to in-
crease the torque production capability of a multi-phase 
machine [7]-[10]. 

In order to analyze multi-phase systems, Fortescue’s 
and space vector transformations can be still adopted. As 
in the case of three phase systems, the Fortescue’s 
method applied to multi-phase systems considers only 
steady-state conditions, whereas the space vector theory 
can be referred to arbitrary time-dependent variables. 
Then, by the space vector approach, real time analysis 
and regulation of both the multi-phase converter and the 
multi-phase machine can be performed with an elegant 
and effective vectorial approach. 

In this paper the space vector approach for multi-phase 
systems is developed as a natural extension of the Fortes-
cue’s transformation, leading to the definition of multiple 
space vectors lying in different d-q planes. The proposed 
analysis builds on an existing but non systematic knowl-
edge base, partially available in literature. 

In particular, the paper is organized as follows: in Sec-
tion II the basic definitions for multi-phase systems are 
given. The symmetrical components resulting by the 
Fortescue’s transformations are presented in Section III. 
In Section IV the multi-phase space vector transforma-
tions are introduced for arbitrary waveforms, whereas in 
Section V the space vectors are considered for sinusoidal 
waveforms and a comparison with the symmetrical com-
ponents is carried out. 

II. BASIC DEFINITIONS FOR MULTI-PHASE SYSTEMS

Let us consider n homogeneous and time-dependent 
real quantities xk(t) related to the n-phase system shown 
in Fig. 1, 

n-phase system

x1(t)
x2(t)

xk(t)

xn(t)

Fig. 1. Schematic drawing of a generic multi-phase system.
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 [x] = (x1, x2, …, xn). (1) 

The multi-phase RMS value X of the n-dimensional 
vector [x] over a given time interval t can be defined as 
the RMS of its norm 

t

dtx
t

X
0

22 1 , (2) 

being 
n

k
kxx

1

22 . (3) 

If all the quantities xk(t) have sinusoidal waveforms 
with the same frequency, the n phasors kX  are intro-
duced as 

),...,,(][ 21 nXXXX , (4) 

according to 

 xk(t) = 2 Xk cos ( t + k) = tj
k eXRe 2 , (5) 

being Xk the RMS value of xk(t) over the fundamental pe-
riod T = 2 / . In this case, the multi-phase RMS value is 
given by 

Tn

k
k dtx

T
XX

0

2

1

22 1 . (6) 

With reference to a multi-phase electric circuit, the 
more general configuration consists in a n-port network, 
as shown in Fig. 2. For arbitrary voltage and current 
waveforms, the input instantaneous power is expressed as 

][][ T

1

ivivp
n

k
kk . (7) 

In the case of sinusoidal steady-state conditions, the 
complex power S  can be defined as the Hermitian inner 
product between voltage and current phasors, as follows 

*T

1

][][ IVIVS
n

k

*
kk . (8) 

The active power P is the average value of the instanta-
neous power over the fundamental period T. It can be ex-
pressed as the real part of the complex power or by the 
inner products between voltage and current phasors

n

k
kk IVSReP

1

)( . (9) 

III. REVIEW OF SYMMETRICAL COMPONENTS

A. Transformations 

The Fortescue’s transformation [1] applied to the n
phasors (4) leads to the following n constant complex 
numbers, called symmetrical sequence components 

),...,,,(][
1210 nSSSSS XXXXX , (10) 

where 
n

k

kh
kS X

n
X

h
1

)1(1 , h = 0, 1, 2, …, n 1 (11) 

being n
j

e
2

.
The inverse transformation is given by 

1

0

)1(
n

h

kh
Sk h

XX   ,   k = 1, 2, …, n . (12) 

The previous transformations can be expressed in a 
compact matrix form as follows 

][][][ -1 XX S , (13) 

]][[][ SXX , (14) 
where 
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1
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n

 . (16) 

Note that [ ] is symmetric and its complex conjugate is 
1* ][][ -n . (17) 

Then, with the exception of the factor n, [ ] is a unitary 
matrix, i.e. [ ]H = n [ ]-1. It is useful to point out that the 
determinant of a unitary matrix has absolute value 1, and 
a linear transformation with a unitary matrix preserves 
Hermitian inner products. 
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n-port 
electric 
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Fig. 2. General representation of a n-port electric network.
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The similarity between (11) and the Discrete Fourier 
Transform (DFT) of a list of n complex numbers should 
be noted. As for the DFT, the normalization factors mul-
tiplying direct and inverse Fortescue’s transformation 
(1/n and n) and the signs of the exponents are merely 
conventions. The only requirements are that direct and 
inverse transformations have opposite-sign exponents and 
that the product of their normalization factors be 1/n. A 
normalization of 1/ n for both makes the transforms uni-
tary, which has some theoretical advantages, but it is of-
ten more practical in numerical computation to perform 
the scaling all at once as above. 

The symmetrical sequence components defined in (11) 
can be reorganized introducing the concept of positive 
and negative sequence component. In particular, the 
component n h can be redefined as the component –h,
according to 

h

hn

S

n
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kh
k

n

k

khn
kS

XX
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X

1
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1
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1
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. (18) 

On the basis of (18), the n sequence components ex-
pressed in (10) are rewritten as 

1210
...,,),(,...,,, SSSSSSS XXXXXXX

rnr
, (19) 

being r = (n 1)/2 for odd number of phases and r = n/2 1
for even number of phases. Then, it is possible to con-
sider sequences from 1 to r only, introducing for each 
one the positive and the negative component, as shown in 
(19). Note that the zero-sequence component, also called 
“homopolar” component, must be always considered, 
whereas the n/2 sequence component, that could be called 
“Nyquist” component, appears only for an even number 
of phases (for this reason it will be enclosed within round 
brackets). 

On the basis of the previous considerations, direct and 
inverse Fortescue’s transformations can be rewritten as 

n

k
kS X

n
X

1

1
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 ,   
n

k

k
kS X

n
X

n
1

1)1(1
2

 , (20) 
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X

h
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)1(1 , h = 1, 2, …, r    (21) 

r
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S

k
Sk hn

XXX )1(11)(
2

, k = 1, …, n (22)

In can be shown that the positive (negative) sequence 
components corresponding to given phasors, are equal to 
the complex conjugate of the negative (positive) sequence 
components, corresponding to the complex conjugate of 
those phasors, that is 

*n

k

kh*
kS X

n
X

h
1

)1(1 , h = 1, 2, …, r. (23) 

B. Powers and RMS 

Applying the Fortescue’s transformations to voltage 
and current phasors in (8) and introducing (17), the com-
plex power can be easily rewritten in terms of symmetri-
cal components as (Plancherel’s theorem) 

**TT*T ][][][][]][[]][[ SSSS IVIVS ,

*T ][][ SS IVnS . (24) 

Note that only voltage and current symmetrical compo-
nents of the same sequence interact and take part in the 
complex power. Then, by introducing the concept of 
positive and negative sequence component, the complex 
power can be written as the sum of the complex power of 
each sequence as 

r

rh
hn SSS 2 , (25) 

being 

*
SSn

*
SS nn

IVnSIVnS
2200 20 , , (26) 

*
SSh hh

IVnS ,    h = 1, 2, …, r . (27) 

The active power P is the real part of the complex 
power. It can be expressed by inner products rather than 
real operators, leading to 

r

-rh
SSSS hhnn

IVnIVnSReP
22

)( . (28) 

Then, also the active power can be written as the sum 
of the active power of each sequence as 

r

-rh
hn PPP 2 , (29) 

being  

0000 SS IVnSReP , (30) 

2222 nn SSnn IVnSReP , (31) 

hh SShh IVnSReP ,    h = 1, 2, …, r . (32) 

The multi-phase RMS value expressed in (6) for the 
generic phasorial quantities ][X  can be rewritten as 

*T2 ][][ XXX . (33) 

By applying to (33) the same procedure followed for 
complex power, it can be shown that (Parseval's theorem) 

r

rh
SS hn

XnXnX 222
2

. (34) 

Then, the multi-phase RMS value of voltage and cur-
rent phasors can be expressed by the square root of (34) 
as function of the RMS values of their symmetrical se-
quence components. 
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IV. SPACE VECTOR APPROACH

A. Transformations 

Let us consider again the n real quantities xk(t) intro-
duced in (1). The Fortescue’s transformation can be di-
rectly applied to these real quantities with arbitrary wave-
forms rather than the phasors representing only sinusoidal 
waveforms, leading to 

),...,,,(][
1210 nSSSSS xxxxx , (35) 

where 
n

k

kh
kS x

n
x

h
1

)1(1 ,    h = 0, 1, 2, …, n 1. (36) 

With the exception for h = 0 (and h = n/2), the quantity 
hSx  is a complex number. It is called space vector 

component of sequence h, or space vector on the dh-qh
plane. Its absolute value xSh is usually called “magnitude” 
of the space vector. 

The inverse transformation is given by 

1

0

)1(
n

h

kh
Sk h

xx ,    k = 1, 2, 3, …, n. (37) 

Also the space vector transformations can be expressed 
in a compact matrix form as follows 

][][][ -1 xxS , (38) 

]][[][ Sxx . (39) 

The space vector sequence components defined in (36) 
can be reorganized introducing the concept of positive 
and negative sequence component. Also in this case, the 
component n h can be redefined as the component –h,
according to 

h

hn

S

n
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kh
k

n

k
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kS

xx
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1
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Then, the n space vector sequence components are re-
written as 

)...,,),(,...,,,(][
1210 SSSSSSS xxxxxxx

rnr
. (41) 

The zero-sequence space vector component must be 
always considered, whereas the additional space vector 
component of sequence n/2 appears for an even number 
of phases only. 

On the basis of the previous considerations, the space 
vector transformations can be rewritten as 

n

k
kS x

n
x

1

1
0

,
n

k

k
kS x

n
x

n
1

1)1(1
2

, (42) 

n

k
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kS x

n
x

h
1

)1(1 ,    h = 1, 2, …, r.  (43) 

It can be shown that positive space vector sequence 
components are complex conjugates of the corresponding 
negative sequence components, that is 

*
SS hh

xx ,         h = 1, 2, …, r.     (44) 

Then, the space vector sequence components defined 
by (36) have Hermitian symmetry. Note that (44) ex-
pressed in terms of space vector sequence components 
corresponds to (23) expressed in terms of symmetrical 
sequence components. 

Owing to (44) it is possible to consider r space vectors 
only, then, different choices can be made. In this paper 
the space vector positive sequence components are con-
sidered, leading to 

n

k

kh
kS x

n
x

h
1

)1(1 , h = 0, 1, 2, …, r  (45) 

r

h

kh
S

k
SSk hn
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1

)1(1 2)1(
20

 ,  (46) 

k = 1, 2, …, n.

For the reasons that will be discussed in Section V, the 
factor 2 that appears in the last term of (46) is usually in-
cluded in the definition of space vectors [2]-[13]. In this 
way, the space vector transformations can be redefined as 

n

k
kS x

n
xx

1
0

1
0

,
n

k

k
kSn x

n
xx

n
1

1
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2
, (47) 
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k
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n
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h
1

)1(22 , h = 1, 2, …, r (48) 

r

h

kh
h

k
nk xxxx

1

)1(1
20 )1( , (49) 

k = 1, 2, …, n.

Note that the subscript “ S ” disappears in the redefini-
tion of the space vectors (47)-(48). 

The choice of considering the positive sequence com-
ponents has been also assumed in [11], [12] for n = 5 
(leading to 0x , 1x , 2x ), and in [13] for  n = 7 (leading to 

0x , 1x , 2x , 3x ). A different solution has been consid-
ered in [5], [6] and [10], where a five-phase system has 
been described by the space vectors 0x , 1x , 3x , i.e., the 
odd-order space vector sequence components. 

B. Power and RMS 

With reference to n-phase electric circuits with arbitrary 
voltage and current waveforms, the instantaneous power 
expressed by (7) can be rewritten in terms of space vector 
sequence components as 
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][][][]][[]][[][][ 2TTT ivivivp . (50) 

It can be shown that 

00010
000100

00
010000
10000
00001

][ 2 n . (51) 

Then, (50) yields 

1

1
00

n

h
SSSS hnh

ivivnp . (52) 

With reference to the space vector definition (48), the 
instantaneous power becomes 

r

h
hhnn ivnivnivnp

1
2200 2

. (53) 

Note that only voltage and current components of the 
same sequence interact and take part in the instantaneous 
power. Then, the instantaneous power can be written as 
the sum of contributions of each sequence 

r

h
hn ppp

0
2 , (54) 

being 

222000 , nnn ivnpivnp , (55) 

hhh ivnp
2

  ,    h = 1, 2, …, r . (56) 

For the generic multi-phase system [x], considered as a 
n-dimensional real vector, the square norm introduced in 
(3) can be rewritten as 

][][ T2 xxx . (57) 

By applying to (57) the same procedure followed for 
the instantaneous power, it can be shown that 

r

h
hn xnxnxnx

1

22
2

2
0

2

2
. (58) 

Then, the square norm of a multi-phase system can be 
expressed as a linear combination of the squared magni-
tudes of its space vector sequence components. In this 
way, the multi-phase RMS value X over a given time in-
terval t expressed by (2) can be calculated by 

r

h
hn XnXnXnX

1

22
2

2
0

2
2

, (59) 

being X0, (Xn/2), and Xh the RMS values of the space vec-
tor sequence components defined by 

t

dtx
t
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hh dtx
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0
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V. SPACE VECTORS IN THE CASE OF
SINUSOIDAL WAVEFORMS

In order to highlight the relationship between symmet-
rical and space vector sequence components, the case of 
sinusoidal waveforms with the same frequency is consid-
ered. In particular, the quantities expressed in (5) are re-
written as 

tj*
k

tj
kk eXeXx

2
2 , k = 1, 2, 3, …, n. (63) 

A. Space Vector components 

Applying the space vector transformations (47) and 
(48) to (63), and taking (21) into account, yields 

tj
S eXRex

0
20 , tj

Sn eXRex
n 2

22 , (64) 

tj*
S

tj
Sh eXeXx

hh
22 , h = 1, 2, …, r.  (65) 

In (65) is shown that each space vector sequence com-
ponent hx  can be decomposed in a direct and an inverse 
rotating vector, as represented in Fig. 3. These counter-
rotating vectors have constant magnitude and opposite 
angular speed . In particular, their magnitudes are 2
times the magnitudes of positive and negative symmetri-
cal components of the same sequence. 

Note that for a multi-phase system the definition “sinu-
soidal and symmetrical” usually corresponds to the pres-
ence of only the direct rotating component of the space 
vector of sequence 1. In this case, the amplitude of sinu-
soids, 2 Xk, equals the magnitude of the space vector, 

1x . This equality is a consequence of the presence of 
factor 2 in (48). 

B. Power and RMS 

Introducing (63) in (47) and (48), the instantaneous 
power sequence components expressed by (55) and (56) 
become 

tj
SS eIVnRePp 2

00 00
 ,  (66)  
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SSnn eIVnRePp
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SSSShhh eIVIVnRePPp

hhhh
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It can be noted that the active power related to each 
symmetrical sequence component represents the average 
value, over the fundamental period, of the instantaneous 
power related to the corresponding sequence component 
of space vectors. 

The instantaneous contributions of the space vector se-
quence components to their RMS values (60)-(62) be-
come 

tj
SS eXReXx 2222

0 00
, (69) 

tj
SSn eXReXx

nn
2222

2 22
, (70) 

tj
SSSS

*
hhh eXXReXXxxx

hhhh
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h = 1, 2, …, r.

Then, the RMS of these contributions over the funda-
mental period T are given by 
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hh XXdtx
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As for the power, the RMS value of each symmetrical 
sequence component is strictly related to the RMS of the 
corresponding space vector sequence component. 

VI. CONCLUSIONS

In this paper a multi-phase electric system has been 
analyzed in terms of both Fortescue’s symmetrical com-
ponents and multiple space vector components. 

With reference to sinusoidal waveforms, the symmetri-
cal components have been reorganized introducing the 
concept of positive and negative sequences. Complex and 
active powers have been written as the sum of the powers 
related to each sequence component. The multi-phase 
RMS value of voltages and currents have been expressed 
by the RMS values of their symmetrical sequence com-
ponents. 

The multiple space vectors are introduced as an exten-
sion of the Fortescue’s transformations, with  reference to 
arbitrary time dependent waveforms, leading to the defi-
nition of space vectors of different sequences lying in dif-
ferent d-q planes. Instantaneous power and RMS in terms 
of space vectors have been introduced as well. 

The space vectors have been considered with reference 
to sinusoidal waveforms in order to emphasize the rela-
tionship with the symmetrical components. In particular, 
it has been shown that, for each d-q plane, the space vec-
tor can be decomposed in two counter-rotating vectors, 
having constant both the magnitude and the angular 
speed. Their magnitudes are 2 times the magnitudes of 
positive and negative symmetrical components of the 
same sequence. Furthermore, the active power related to 
each symmetrical sequence component represents the av-
erage value, over the fundamental period, of the instanta-
neous power related to the space vector on the corre-
sponding d-q plane. Finally, the relationship between the 
RMS value of each symmetrical sequence component and 
the RMS value of the corresponding space vector se-
quence component has been carried out. 

The proposed analysis could be further extended to pe-
riodic non-sinusoidal waveforms by Fourier series expan-
sion. In addition, it could been shown that, for a non 
prime number of phases, the multi-phase system can be 
seen as a combination of basic sub-systems having a 
prime number of phases. 
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