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Chapter 4 
 
 
 
 

Control Techniques for Matrix Converters 
____________________________________________________________________________ 
 
 
  Since its first description in [1] the matrix converter has been the subject of an intensive 
ongoing research, and the aspect which has attracted much of the research effort has been the 
control techniques. For direct AC-AC matrix converters used in adjustable speed drives the ideal 
control technique should: 

Ø provide independent control of the magnitude and frequency of the generated 
output voltages; 

Ø give sinusoidal input currents with full control of the displacement angle; 

Ø provide the maximum output to input voltage ratio; 

Ø satisfy the conflicting requirements of minimum low order harmonics and 
minimum switching losses, 

Ø be able to compensate the effects of unbalanced and/or distortions of the supply 
input voltages; 

Ø be computationally efficient. 

The control scheme originally proposed in [1], although characterized by better 
performance than naturally commutated cycloconverters, it had significant output voltage 
limitations and serious waveforms distortion. 

In 1980 Venturini proposed in [2] an alternative high switching frequency control 
technique which was more effective than traditional control techniques, but still having a 
maximum output voltage equal to half of the input voltage and a restriction in the input power 
factor control.  

In 1985 Ziogas et alia proposed in [3] and [4] a control technique that was based on a 
totally different approach, in which the input voltages are first “rectified” to create a fictitious 
DC bus and then “inverted” to assemble the output voltages at the required frequency. 
Computationally complicated, this control technique yielded improved waveforms and higher 
input voltage utilization, but still had limitations in the input-output harmonic distortion and in 
the input power factor control. 

In 1987 Schauder patented in [5] a control technique based on a similar rectifier- inverter 
concept which emulates the action of a DC-link inverter, but derived on simplistic considerations 
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of input and output power. Experimentally proved in [6] this technique provided improved input 
and output waveforms along with maximum voltage transfer ratio and unity input power factor. 
But some limitations still remained in the input power factor control and input voltage 
disturbances compensation.  

In 1988 Venturini and Alesina proposed in [7] an improved control algorithm that raised 
the maximum input-output voltage transfer ratio to 0.867, which was demonstrated to be the 
theoretical limit under the constraint of sinusoidal input and output waveforms, and provided for 
full input power factor control and compensation of input voltages unbalance and/or distortion. 

In 1989 Roy and April proposed in [8] an interesting scalar control algorithm, with 
performance comparable to the Venturini method’s apart from the input disturbance 
compensation capability but computationally more efficient.  

In 1989 Huber and Borojevic proposed in [9] the first control technique for matrix 
converter based on space vector modulation. Using a space vector representation of the input and 
output currents and voltages, the approach of the proposed control technique resembled the 
rectifier-inverter concept, considering the matrix converter as a two stage transformation 
converter: a rectification stage which provides a constant imaginary DC-link and an inverter 
stage which produces the three phase target voltages. In this way a so called “indirect” space 
vector modulation of input currents and output voltages was carried out. An improved version of 
the control algorithm that allowed for input power factor control and compensation of input 
voltages distortion was proposed in [10] in 1991. Despite of this technique basically provides 
performance as good as the Venturini’s technique, it adds some advantages in terms of digital 
implementation and better representation of the power conversion process. 

In 1993 Casadei, Tani et alia proposed in [11] a new control method based on space vector 
modulation. The originality of the proposed control algorithm resides in its different approach to 
the matrix converter control, which does not make use of any imaginary DC-link but physically 
adheres to the direct power conversion process carried out by the matrix converter. The on-time 
durations of the permitted matrix converter switches combinations are derived under the 
assumption that the output voltages are directly assembled from consecutive “chops” of the input 
voltages. Compared to the Venturini’s method and the Indirect SVM techniques, the “Direct 
SVM” control method provides comparable performance but yields a more physical adherence to 
and an immediate comprehension of the direct power conversion process. These become key 
features when unconventional control strategies has to be design. Last but not least, due to its 
compact and easy formula, the control of the input power factor and the compensation of input 
voltages distortion can be easily carried out without significant addition of calculations. 

 
  This chapter focuses on different matrix converter modulation strategies based on space 
vector modulation. By means of a simulation model the performance of these strategies have 
been analyzed under either balanced and sinusoidal or unbalanced and nonsinusoidal supply 
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voltage conditions. The numerical results have been verified by experimental tests carried out on 
a matrix converter prototype during a six month working period at the Institute of Energy 
Technology at the University of Aalborg, Denmark.  
 
 
4.1 Brief introduction to the space vector representation of a three phase system 
 

For the reader that might be not familiar to the use of space vectors for representing three 
phase quantities, the basic formulae and concepts are briefly recalled in this section. 

For the analysis of a three phase system, the instantaneous space vector representation can 
be utilized according to the following transformation 
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With the condition xa + xb + xc = 0, the inverse transformation is  

21 axx,axx,xx cba ⋅=⋅=⋅=              (4.2)   

where (⋅) denotes the scalar product. 
If the three phase system is supposed to be periodical with period T = 2π/ω, the space 

vector components are periodical too and can be decomposed in the complex Fourier series [12] 
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represents the time phasor of the kth harmonic component. 
Indicating by pX the positive sequence fundamental component and by *

nX the negative 

sequence fundamental component, the equation (4.4) written for k = ±1 gives 
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For a sinusoidal and balanced three phase system the relevant space vector has constant 
magnitude and constant rotating speed, which is equal to the angular frequency ω of the system. 
The corresponding equations are given hereinafter. 
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where θi is the phase angle at the instant t = 0. Substituting expressions (4.6) in (4.1) the 
following space vector expression can be derived 

tjtjj
max eXeeXx i ωωϑ ==                  (4.7)   

As it is shown by Fig.4.1.a, the trajectory described by this space vector in the Gauss plane 
is a circumference. 

In the case the three phase system is sinusoidal but unbalanced, the related space vector 
consists of the positive and negative sequence fundamental components. Therefore, accordingly 
to (4.5) the space vector x  can be written as  

tjtj eXeXx ω−
−

ω += 11                   (4.8)   

Due to the presence of the negative sequence component, both magnitude and rotating 
speed of the space vector vary in time. In this case the locus described by the space vector x  is 
an ellipse, as shown in Fig.4.1.b. 

Likewise, if the three phase system is nonsinusoidal and balanced, the space vector 
consists of a positive sequence fundamental component plus other components representing the 
distorting harmonic components. As before, magnitude and rotating speed of the system space 
vector are not constant in time. In Fig.4.1.c it is shown the locus described by the following 
space vector  

tjtj eXeXx ω−
−

ω += 5
51                    (4.9)   

where tjeX ω−
−

5
5  is the vector component correspondent to a 5th negative harmonic component. 

 
 
 
 
 
 
 
 
 

  a)             b)             c) 

Fig.4.1. Space vector loci for different three phase systems. 
a) Sinusoidal and balanced. b) Sinusoidal and unbalanced. c) Non-sinusoidal and balanced. 
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4.2 Space vector approach for Matrix Converter 
 

As aforementioned the three-phase to three-phase matrix converter consists of 9 bi-
directional switches through which it connects two independent three phase systems.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.2 Three-phase to three-phase matrix converter. 

 
With reference to the matrix converter and the relevant symbols shown in Fig.4.2 and 

accordingly to equation (4.1), it is possible to define the following space vectors: 
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where vi(t), vo(t) , ii(t) and io(t) are the time dependent magnitudes of the space vectors while 
αi(t), αo(t) , βi(t) and βo(t) are the corresponding time dependent phase angles.  

Now, these four space vectors can be defined for any matrix converter switches 
configuration (in the following also simply configuration). But not all the possible configurations 
that a matrix converter can assume can be usefully employed. Taking into account that the 
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converter is generally supplied at the input by a voltage source and it feeds at the output an 
inductive load, two rules have to be always respected: 

i) the input phases should never be short-circuited;  

ii) the output current should never be interrupted. 

Under these constraints it can be verified that in a three-phase to three-phase matrix 
converter only 27 different switches configurations are permitted. These 27 switches 
configurations are listed in Table I. Each configuration is identified by a number and by a three-
letter code. The three letters describe which output phase is connected to which input phase 
accordingly to the schematic representation of Fig.4.3. 

For instance, the configuration named aca refers to the matrix state where output phase A 
is connected to input phase a, output phase B is connected to input phase c and output phase C is 
connected to input phase a. 

In Table I, for each configuration the relevant output line-to- line voltages are given as 
function of the input line-to- line voltages, which are impressed by the grid, as well as the input 
converter currents are expressed as function of the output line currents, which are impressed by 
the load. 

Accordingly to the corresponding output line-to-line voltage and input current space 
vectors, these matrix converter configurations are classified as “active”, “zero” and 
“synchronous” configurations. 

The active configurations are 18 and numbered from ±1, ±2,.., ±9 in Table I. They 
determine six prefixed positions of the output line-to- line voltage space vector ov  which are not 
dependent on the input line-to- line voltage space vector phase angle αi(t) and six prefixed 
positions of the input current space vector ii  which are not dependent on the output line current 
space vector angle βo(t). The magnitude of the space vectors ov  and ii  is variable and depends 
on the instantaneous values of the input line-to-line voltages and output line currents 
respectively. The active configurations have also the common feature of two output lines (or 
phases) connected to the same input line (or phase) as it can be seen in Table I, by the second 
column starting from the left hand side. 

The zero configuration are 3. In zero configurations the three output lines are connected to 
the same input phase, so that they determine zero output line-to- line voltage and input current 
space vectors.  

The synchronous configurations are 6 and not numbered in Table I. These configurations 
determine output line-to- line voltage space vector ov  having a phase angle αo(t) which is 
dependent on the input line-to- line voltage space vector phase angle αi(t). Likewise, the input 
current space vector ii  has a phase angle β i(t) which is related to the output line current space 
vector phase angle βo(t). 

The magnitude of the space vectors ov  and ii  is constant and equal to the magnitude of the 
input line-to-line voltage and output line current space vectors respectively. 
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Table I. 
List of the 27 possible matrix converter switches configurations. 

 
In order to make things easier for the reader and the writer, hereinafter any space vector 

will be simply referred as vector. 

 
 
 
 
 
 
 

Fig.4.3 Matrix converter scheme for encoding configurations. 
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4.3 Space vector modulation applied to Matrix Converter control 
 

The space vector modulation (SVM) is a control technique that has been widely used in 
adjustable speed drives and more generally in power converter control. In conventional DC-link 
voltage inverter applications the target of the SVM technique is to provide the desired or 
reference output voltage vector ov  using the voltage vectors generated by the different inverter 
configurations. 

In the matrix converter case the SVM technique still point to provide the desired output 
voltage vector but due to the higher number of configurations available it can also control the 
phase angle of the input current vector ii . 

Several control strategies based on SVM technique have been proposed in literature for the 
matrix converter.  

In the control scheme proposed in [13] only synchronous and zero configurations are used. 
The scheme is simple to implement digitally and able to provide input power factor control and 
maximum voltage transfer ratio, but it requires a number of supply input phases at least of 6, in 
order to produce acceptable motor losses and torque pulsations.  

In [14] a control scheme which make use of synchronous configurations only is proposed 
for a three-phase to three-phase matrix converter and experimentally proved. However, the 
scheme does not compensate for input disturbances and the polarity consistency rule is not 
respected leading to higher harmonic distortion of the output voltages and input currents.  

All the control strategies presented in this chapter make use of the 18 active and the 3 zero 
configurations only. In Fig.4.4 and Fig.4.5 the output voltage and input current vectors 
corresponding to the 18 active and 3 zero configurations are shown and how the Gauss plane is 
divided in sectors is indicated.  

It has been said that in matrix converter the aim of the SVM control algorithm is to 
generate the desired output line-to- line vector ov  and the input line current vector phase angle β i 
which set the input power factor. An important point worth noting with regard to the input 
current vector is that only the phase angle β i can be controlled. This is due to the fact that the 
matrix converter has no internal energy storage components. As a consequence, neglecting the 
switching losses, the instantaneous input power to the converter equals the instantaneous output 
power to the load. Using the space vector representation, this matrix converter inherent power 
balance can be expressed as  

oiii piep == ⋅
2
3                      (4.14)   

where the input line-to-neutral voltage vector ie  is defined, consistently to equation (4.1), by the 
following expression [11] 
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Equation (4.14) establishes that for a given output power and input voltage vector, which is 
impressed by the AC mains supply, there are infinite possible solutions for the input current 
vector. On the contrary, if we define the phase angle of ii  by a suitable modulation of the 
converter, the power balance equation provides the complete determination of the input current 
vector. 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.4 Output voltage space vectors for     Fig.4.5 Input current space vectors for 
              active and zero configurations          active and zero configurations 

 
In principle, the SVM algorithm is based on the selection of four active configurations 

which are applied for suitable timewidths within each cycle period tC. A zero configuration is 
then applied to complete tC. 

In order to explain the basic modulation algorithm, reference will be made to Fig.4.6 and 
Fig.4.7, where ov  and ii  are both lying in sector 1. This assumption does not affect the general 
validity of the analysis. 

At any cycle period, the output voltage vector ov  and the input current displacement angle 
ϕi are known as reference quantities. Since the input line-to-neutral voltage vector ie  is imposed 
by the source voltages and is also known by measurements, the control of ϕi can be achieved 
controlling the phase angle β i of the input current vector, as it can be easily understood by 
Fig.4.7.  

In Fig.4.6 the reference voltage ov  is resolved into the components '
ov  and ''

ov  along the 
two adjacent vector directions. The '

ov  component can be synthesized using two voltage vectors 
having the same directions of '

ov . Between the six possible matrix converter switches 
configurations (±1, ±2, ±3), the ones that allow the modulation of the input current direction, 
also, have to be chosen. It is verified that this constraint allows the elimination of two 
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Fig.4.6 Space vector modulation of the      Fig.4.7 Space vector modulation of the  
            reference output voltage vector.          reference input current phase angle. 
 
configurations, +2 and –2 in this case. Among the remaining four, the two switches 
configurations giving higher voltage values are chosen to be applied, +1 and –3 in the case. 
Likewise, the matrix converter switches configurations required to synthesized the ''

ov  
component can be also determined, being in the case –4 and +6. 

Using the same procedure, it is possible to determine the four switches configurations 
correspondent to any possible combination of output voltage and input current sectors, which are 
quoted in Table II. The last row symbols are introduced in order to identify each switches 
configuration for a given couple of sector values. 

Table II 
Matrix configurations for each combination of output voltage and input current sector. 

       vo 
ii 
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Now, it is possible to write in a general form the basic equations of the SVM algorithm 

which satisfy, at the same time, the requirements for the reference output voltage vector and the 
input displacement angle. These equations can be written as  
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where dI, dII, dIII, dIV are the on-time ratio (i.e. dI = tI/ tC ) of the four configurations and Kv 
= 1, 2, …., 6 represents the output voltage sector. vI, vII, vIII, vIV are the output voltage vectors 
associated, respectively, with the switches configurations I, II, III and IV given in Table II. The 
same formalism is used for the input current vectors.  

In equations (4.16) - (4.19) o
~α  and i

~
β  are the output voltage and input current phase angle 

referred to the bisecting line of the corresponding sector. In equations (4.18) and (4.19) the scalar 
product imposes the input current vector along the desired direction. 

Solving equations (4.16)-(4.19) with respect to the on-time ratios, after some formulae 
manipulations, leads to the following relationships: 
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  Equations (4.20)-(4.23) have a general validity. For any combination of the output voltage 
sector Kv and the input current sector Ki Table II provides the four switches configurations to be 
used within the cycle period tC and equations (4.20)-(4.23) give the correspondent on-time ratios.  
  In equations (4.20)-(4.23) the following angle limits apply: 

6666
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For the feasibility of the control algorithm, the sum of the four on-time ratios must be 
lower than or equal to unity: 

1≤+++ IVIIIIII dddd                     (4.25)   

A zero configuration is applied to complete the sampling period. If equations (4.20)-(4.23) 
are substituted in (4.25), after some formulae manipulations, the following equation can be 
obtained:  
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This is a significant equation. What is on the right hand side of the equation is, at any 
instant, the theoretical maximum limit for the output voltage vector magnitude, which depends 
on the instantaneous input voltage vector magnitude, the output voltage and input current vectors 
phase angle and the reference displacement angle of the input current vector.  

The equation (4.26) is very useful in order to define the performance limits of the matrix 
converter when not- ideal input voltage conditions exist on the AC mains supply or when a 
dynamic control of the output voltage vector is required, as for high-performance AC drives. 

It is worth noting that, in the particular case of balanced and sinusoidal supply voltage 
conditions, if balanced output voltages have to be generated, the usual maximum modulation 
depth occurs when the right hand side term of (4.26) is a minimum, which occurs when o

~cos α  
and i

~
cosβ  are equal to 1. In this case equation (4.26) leads to the following relation 

iio cosVV ϕ≤
2
3                      (4.27)   

where Vo and Vi represent the constant values of the output and input voltage vector 
magnitude. When reference input power factor is set at unity, equation (4.27) gives the well 
known theoretical maximum voltage transfer ratio of matrix converters [7] under the constraint 
of sinusoidal input and output waveforms. 
Equations (4.20)-(4.23) show that the implementation of the SVM algorithm requires, at any 
cycle period, the knowledge of the input line-to- line voltage vector iv . Therefore, two line-to-
line input voltages have to be measured. For balanced and sinusoidal supply voltages this 
requirements is not necessary since the synchronization with the input voltages can be achieved 
by detecting the zero crossing of an input voltage. 
 
 
 
 



 71 

4.4 Performance of a Matrix Converter under non ideal supply voltage conditions  
 
  In general, the matrix converter control algorithms are derived under the assumption that 
supply voltages are sinusoidal and balanced, but in practice the AC mains supply is usually 
unbalanced to a certain extent and distorted, due to the presence of non- linear loads connected to 
it. Due to the lack of an intermediate DC link and relevant energy storage components, the 
matrix converter is sensitive to these disturbances in the input voltages, as these will transmit 
directly to the output side of the converter.  
  As a consequence, a control algorithm, in order to be effective has to be able to provide a 
system of balanced and sinusoidal output voltages even under not ideal supply voltage 
conditions.  

In [15]-[18] it has been demonstrated how it is possible to generate balanced and sinusoidal 
output voltages even when the input voltages are unbalanced. In [15] a detailed harmonic 
analysis of the matrix converter input current under unbalanced input voltages is carried out on 
the basis of a rigorous analytical approach. In [16] this analysis has been further developed in 
order to take also into account the output unbalance. Still using an analytical approach, in [17]-
[18] two modulation strategies which differently perform in terms of harmonic content of the 
matrix converter input current have been investigated under unbalanced input voltage conditions. 

In [19] the analysis of the input current harmonics has been extended to the case of 
unbalanced and nonsinusoidal input voltages by using a general approach based on the 
linearization of the matrix converter input/output equations. The advantage of this linearized 
analysis is to allow the investigation of the matrix converter performance under any condition 
determined by disturbances in the input supply voltages. 

Hereinafter three modulation strategies will be presented and analyzed using the linearized 
approach. These strategies have similar performance with respect to the output voltages as they 
have the same output voltage reference vector, but they differently modulate the matrix converter 
input currents, since they define a different instantaneous displacement angle between the 
vectrors ii  and ie . As a consequence they give rise to different low order harmonic spectra of 
the input currents when disturbances exist in the input supply voltages.  
 
 
4.4.1 Analysis of the input current low order harmonics 
 

As direct type power converter the matrix converter does not have internal storage energy. 
Making the assumption of ideal switches the input power flow equals the output power flow at 
any instant, then it holds 

ooii ieie ⋅⋅ =
2
3

2
3                      (4.28)   
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where ooii i,e,i,e are the instantaneous space vector representation of the input and output line-
to-neutral voltages and currents accordingly to equations (4.10)-(4.13) and (4.15) and (⋅) denotes 
the scalar product.  

This power balance is the basis of the analysis presented in this section. Equation (4.28) 
also clearly shows that if the output power is kept constant, generating a sinusoidal and balanced 
output voltage system, any distortion and/or unbalance in the input voltage vector ie  necessarily 
translates in a distortion and/or unbalance of the input current vector. 

The following analytical developments are carried out under the assumption of neglecting 
the effects of the switching harmonics and considering for the output voltages and input currents 
their average values over a cycle period. This assumption is deemed acceptable since the analysis 
is focused on harmonic current components at frequencies much lower than the usual switching 
frequency of matrix converters. 

Bearing in mind that modulating the input current vector means to define its reference 
phase angle, it is assumed that the input current vector is modulated along the direction of an 
arbitrary space vector ψ , named modulation vector. Then, the following equation can be written 

0=ψ ⋅ iij                        (4.29)   

Solving (4.28) and (4.29) with respect to ii  leads to 

ψ
ψ+ψ

=
 e e

p
i *

i
*

i

o
i 3

4                    (4.30)   

where *
ie  is the complex conjugate of the input line-to-neutral voltage vector and po is the 

instantaneous output power, given by the expression 

ooo iep ⋅=
2
3                       (4.31)   

Operating the matrix converter in order to generate balanced output voltages on a balanced 
load, the output power assumes a constant value, indicated in the following by Po. Equation 
(4.30) gives a general relationship for the input current vector expressed as a function of the 
output power, the input voltage vector and the modulation vector. With regard to equation (4.30) 
it is important to note that, consistently to what aforementioned, the input current vector is not 
affected by the amplitude of ψ , but only by its phase angle. The relation (4.30) can be further 
developed once the modulation law for the input current is specified. 

As an example, if the input current vector is modulated in order to be, at any instant, in 
phase with the input voltage vector ie , it can be assumed  

ie=ψ                         (4.32)   
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This choice determines unity input power factor. By substitution of (4.32) in (4.30) it is obtained 

*
i

o
i

e

P
i

3

2
=                         (4.33)   

On the basis of equation (4.33), the input current can be easily determined by numerical 
analysis once the input voltage vector is known. 
 
 
4.4.2 Linearized analysis 
 

The limit of the analytical approach used in [15]-[18] for analyzing the input current 
quality under non- ideal supply voltages conditions is the practicability to get a solution only if 
just one extra component is considered in addition to the positive sequence fundamental one 
[19].  

The advantage of the linearized analysis is the possibility to deal with more complicated 
non- ideal supply voltages conditions at the expense of a slight approximation, as it has been 
demonstrated in [19]. The linearized analysis holds for practical values of the supply voltage 
disturbances and provides an approximate solution of the input current harmonic content. For the 
sake of clarity, the term “disturbance” will be used hereinafter either to indicate the negative 
sequence fundamental component or a harmonic component. 

The linearized approach is based on the linearization of the matrix converter input-output 
equations. The analysis assumes that the input voltage vector is given by two terms, the first 
representing a system of balanced and sinusoidal input voltages and the second representing a 
small input voltage vector disturbance. Accordingly to these assumptions, the input line-to-
neutral voltage vector can be written as 

i
tj

ii eeEe i ∆+= ω
1

                     (4.34)   

In the same way, the input current vector is given by 

i
tj

*
i

o
i ie

E

P
i i ∆+= ω

1
3

2
                    (4.35)   

In equation (4.35) the first term represents balanced and sinusoidal currents with unity 
input power factor. The second represents the input current disturbance. 

In similar way, the modulation vector ψ  along which the input current vector is modulated 
can be expressed as 

ψ+=ψ ω ∆tj
i

ieE
1

                    (4.36)   
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In Fig.4.8 a representation of the above defined space vectors and its components is given. 
If the equations (4.34) and (4.36) are substituted in the general expression (4.30), after some 
manipulation and neglecting the second-order effects the following expression is obtained 
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22

11
1 333

2
      (4.37)   

Equation (4.37) shows that the input current vector consists of three terms. The first term 
represents the input current vector which would be generated if the input voltage system was 
balanced and sinusoidal, likewise to equation (4.35). The second and third terms represent the 
input current disturbance due to the input voltage vector disturbance. When the modulation 
strategy is established, these terms can be further developed. 

 
 
 
 
 
 
 
 
 
 

Fig.4.8 Representation of the input space vectors. 

 
Looking at equation (4.37) two possible input current modulation strategies can be easily 

identified. The first is defined by ie∆∆ =ψ  and allows to cancel the first disturbance term. The 
second strategy is defined by ie∆∆ −=ψ  and allows to cancel the second disturbance term in 
(4.37). But many other strategies could be chosen to define the instantaneous displacement angle 
between ie  and ii . A third strategy that might be used is defined by 0=ψ∆ . 

In the following, the effects of these three strategies on the input current spectrum will be 
analyzed. With this object in view, it is opportune to express the input voltage and current 
disturbances by their complex Fourier series expansion as follows: 
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Equations (4.38) and (4.39) represents any type of input voltage disturbance.  
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Furthermore, having the aim to discuss the performance of the three strategies in terms of 
input current quality, the following evaluation parameters are defined 

N

N
k ii kRMS

I
2
3

=i
+

−
∑ 2

∆∆                  (4.40)   
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3                    (4.41)   

RMSii∆  is the root mean square (RMS) value of the input current disturbance ii∆  and 
RMS

I3  

is the three phase RMS value of the matrix converter input currents, both calculated on the basis 

of a finite number N of positive and negative harmonic components. 

 
 

4.4.3 Modulation strategy A 
 

Modulation strategy A can be utilized in order to keep, at any instant, the input current  
vector ii  in phase with the input line-to-neutral voltage vector ie . This means that the input 
power factor is instantaneously kept at unity. Such operating condition is represented by  

ie∆∆ =ψ                        (4.42)   

From equations (4.34) and (4.36) this means that  

ie=ψ                          (4.43)   

accordingly to what said above. If taking into account equation (4.38), equation (4.42) is 
substituted in equation (4.37), the following expression is obtained for the input current vector. 
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Equation (4.44) clearly shows the direct correlation between the input current and the input 
voltage harmonic content. It can be noted that the kth harmonic component in the input voltage 
disturbance produces a harmonic component in the input current of order 2 - k. In the case of 
unbalanced sinusoidal supply voltages ( k = -1), for instance, the input current disturbance is 
represented by a third harmonic component and the ratio of its magnitude to the fundamental is 
equal to the input voltage disturbance one. 
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4.4.4 Modulation strategy B 
 

Modulation strategy B has been defined with the purpose of reducing, compared to strategy 
A, the harmonic content of the input currents under unbalanced input supply voltage conditions 
[18]. The operating condition of this starategy is defined by  

ie∆∆ −=ψ                        (4.45)   

From equations (4.34) and (4.36) this means that  

ii ee ∆2−=ψ                       (4.46)   

By equation (4.46) it is evident that strategy B does not keep the input power factor at 
unity istantaneously but it carries out a dynamic modulation of the input current diplacement 
angle. Fig.4.9 better explains the concept of dynamic modulation.  

Substituting the modulation law expressed by (4.45) in equation (4.37) and taking into 
account equation (4.38), the input current vector reduces to the following expression 
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             (4.47) 

  

In this case also, it is evident the direct correlation between the input current and the input 
voltage harmonic content. It can be noted that the kth harmonic component in the input voltage 
disturbance produces a harmonic component in the input current of the same harmonic order. It 
is interesting to note that under unbalanced sinusoidal supply voltages ( k = -1), the input current 
disturbance is represented by only the negative sequence fundamental component. This means 
that compared to strategy A, under unbalanced sinusoidal supply voltages, strategy B provides 
input currents with sinusoidal waveforms at the expense of a certain degree of unbalance. 

But if the negative sequence fundamental component of the input currents is considered as 
a disturbance, then the RMS value of the input-current disturbance assume the same values of 
strategy A [19]. 
 
 
4.4.5 Modulation strategy C 

 
Modulation strategy C has been proposed in [19] as the optimal modulation strategy that 

under any supply voltages disturbances minimizes the generated input currents disturbances. The 
operating condition of this starategy is simply defined by  

0=ψ∆                         (4.48)   
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From equations (4.34) and (4.36) it follows that  

tj
i

ieE ω=ψ
1

                      (4.49)   

Accordingly to equation (4.49), using strategy C the input current vector is modulated in 
phase with the vector corresponding to the input voltage positive sequence fundamental 
component. As a consequence, in a similar way to strategy B, the input power factor is not 
controlled to be istantaneously at unity.  

Substituting the modulation law expressed by (4.48) in equation (4.37) by way of equation 
(4.38), the input current vector reduces to the following expression 
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Equation (4.50) states that a harmonic component of order k in the input voltage vector 
disturbance produces two input current harmonic components of order k and 2 - k, which have 
the same amplitude. But what is important to note is that the amplitude of these input current 
harmonic components is one half of the harmonic components given by strategy A in (4.44) and 
strategy B in (4.47). The effect is a reduction with respect to strategies A and B of the rms value 
of the input current disturbances as well as of the input current distortion factor [19]. 

Unbalanced and Sinusoidal Input Voltages 
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Fig.4.9 Example of how the three strategies operate under unbalanced and sinusoidal supply voltages. 
 

Some remarks can be made with reference to Fig.4.9.  
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Looking at the modulation vector ψ  it can be noted that under sinusoidal and balanced 
input voltages condition vector its expression is the same for the three strategies, which modulate 
the input current in order to be istantaneously in phase with the input line-to-neutral voltage 
vector ie , that means 0=ϕ i . But when a disturbance exists on the input voltages this is no longer 
valid for strategies B and C.  

For strategy B the modulation vector has a circular motion around the vector ie  which 
brings the input displacement angle ϕi to oscillate within the range 

11 ii eearctg
−

± . In this case it 
is the mean value of the input displacement angle ϕi on the fundamental period to be equal to 
zero. 

For strategy C is the input voltage vector ie  that has a circular motion around the 
modulation vector but the effect on the input displacement angle ϕi is the same.Then, for strategy 
C too, the input displacement angle ϕi is equal to zero on the fundamental period average.  

From this perspective, strategies B and C with respect to strategy A might be viewed as 
dynamic modulation strategies. 
 

 
4.5 Validation of the three modulation strategies 
 
  The core of the research activity carried out during the dottorato course has been 
concentrated on the validation of the theretical results above presented. In [18] and [19] the 
performance of the three strategies in terms of input current quality have been verified by means 
of numerical simulations carried out on the basis of a simplified model of a matrix converter 
system.  

The model assumed an AC mains supply of infinite power, that means zero series 
impedance, and did not take into account any kind of input filter. Although these assumptions  
were not expected to affect the validity of the linearized analysis results, they established some 
operating problems. 

First, in a real matrix converter system it would have been really complicated, if still 
possible, to measure the matrix converter input currents, because of accessability problems to the 
point of measurement. 

Second, a real matrix converter does need an input filter and how this input filter interacts 
with the matrix converter and with the AC main supply is hardly straightforward to predict.  

Third, the lack of an AC mains impedance as well as of an input filter in the simplified 
model did not allow to evaluate the effect, if any significant, of the input current disturbances 
injected by the matrix converter on the input voltages. 

On the basis of these consideratons a new mathematical model of a matrix converter 
system has been developed. Moreover, it has been decided to evaluate the performance of the 
three modulation strategies also on the basis of the input line currents instead of the converter 
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input currents. This choice was also dictated by the fact that in actual systems the standards set 
limits for the power factor and the harmonic distortion at the point of common coupling. 

Consistently to this choice and the above considerations, in order to compare the 
performance of the three modulation strategies in terms of input power quality the following two 
evaluation parameters have been also considered: 
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1                  (4.52)   

The first parameter HDN is the harmonic distortion factor of the input line currents 
calculated with respect to the first N harmonic components, with N =11 and N =15, in order to 
give more evidence to the region of the harmonic spectrum in which the strategies are expected 
to be effective. 

The second parameter I3RMS is the three phase RMS value of the three phase input line 
currents system defined as in [12]. This expression is equivalent to equation (4.41) but it allows 
to calculate the three phase RMS value by simply measuring the RMS value of the input 
currents.  

 
 

4.5.1 Mathematical model of a Matrix Converter control system 
 

In Fig.4.10 it is shown the schematic circuit of the matrix converter system that has been 
modelized.  

As far as the matrix converter is concerned it is assumed that the commutations are 
instantaneous and ideal, that means no losses: the bi-directional switches are ideal. 

The AC mains supply has finite power. It is a matter of fact that neglecting supply 
impedance might give misleading results since it affect the overall impedance seen by the input  
side of the converter. 

For the input filter a second order L-C configuration with damping parallel resistor has 
been chosen as more general solution. This choice has been made on the basis of a survey of the 
most commonly used input filter configurations in matrix converter systems and drives [1]-[10] 
and in order to investigate how the input filter parameters affect the performance of the control 
system and what is, if any, the optimal solution.  

With regard to the output load, a three phase ohmic-inductive passive load has been 
considered.  
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The numerical or mathematical model has been implemented using the MS-FORTRAN 77 
language. At each cycle period the switching configurations of the matrix converter to be 
applied, four active and one zero, are selected according to the SVM control algorithm outlined 
in section 4.3.  

At the beginning of each cycle period the input and the output voltage vectors are known. 
Once the input current modulation strategy is chosen, it is possible to select the five switching 
configurations and calculate the corresponding on-time ratios. During the time width of each 
switching configuration, the input voltages, and then the output voltages, are assumed to be 
constant. Under these assumption, it is possible to solve analitycally the voltage equations of the 
load. In this way the switching effects have been taken into account. In order to obtain more 
realistic results, phenomena like the influence of the discretization and the sampling delay of the 
two input line-to-line voltages measurement has been also considered. 

 
 
 
 
 
 
 
 
 
 
 

a) 

 
 
 
 
 
 
 
 
 
 
 

   b)            c)             d) 

Fig.4.10 Schematic circuits of the modelized matrix converter system. a) Main block diagram. 
b) Three phase AC mains supply. c) LC input filter with damping parallel resistor. 

d) Three phase symmetrical R-L passive load. 
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An important point worth noting is related to how the selected configurations are applied 
within a cycle period and which is the sequential order of application. It is a matter of fact that 
the configurations switching sequence affects the harmonic spectrum of the output voltages and 
input currents as well as the converter switching losses [20]-[22]. In the numerical model it is 
assumed that the so called “double sided” configurations switching sequence [22] is used. 

The cycle period of the control algorithm has been set to 250 µs. With regard to the output 
voltage a simple constant V/f control has been implemented.  

The following Figs.4.11 - 4.18 have just the purpose to show the general performance of a 
matrix converter and to verify that the expectations are met. Some comments are also given. The 
AC mains supply is balanced and sinusoidal. The output to input vo ltage ratio is equal to ≅ 0.49. 
The output frequency is 25 Hz. Strategy C is used. In Table III the system parameters value used 
for the simulations are quoted. It has to be noted that the input filter capacitance has been 
oversized.  

Table III. 
System parameters value used by simulations. 

LS 

[mH] 
RS 

[Ω] 
RF 

[Ω] 
LF 

[mH] 
CF 

[µF] 
LL 

[mH] 
RL 
[Ω] 

0.277 0.14 ∝ 1.2 14 27 17 

 
 
  For Figs.4.10, 4.12, 4.14, 4.16 the matrix converter input power factor is controlled to be at 
unity since the reference input current vector phase displacement with respect to the input line-
to-neutral voltage vector ie is set to zero, ϕi = 0. 
  In the case of Figs.4.11, 4.13, 4.15, 4.17 the reference input current vector phase 
displacement is lagging the vector ie  by 15° degrees. This is evident looking at Figs.4.10 and 
4.11. 
 

           
Fig.4.11 Input line-to-neutral voltage and            Fig.4.12 Input line-to-neutral voltage and  

relevant input current for ϕi=0.        relevant input current for ϕi=-15°. 
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Fig.4.13 Supply line-to-neutral voltage and    Fig.4.14 Supply line-to-neutral voltage and  

   relevant input line current for ϕ i=0.       relevant input line current for ϕ i=-15°. 

          
  Fig.4.15 Output line-to-line voltage         Fig.4.16 Output line-to-line voltage  

for ϕi=0.                  for ϕi=-15°. 

            

Fig.4.17 Output line current for ϕi=0.      Fig.4.18 Output line current for ϕi=-15°. 

 
  For Figs.4.11, 4.13, 4.15, 4.17 the matrix converter input power factor is controlled to be at 
unity since the reference input current vector phase displacement with respect to the input line-
to-neutral voltage vector ie is set to zero, ϕi = 0. 
  In the case of Figs.4.12, 4.14, 4.16, 4.17 the reference input current vector phase 
displacement is lagging the vector ie  by 15° degrees. This is evident looking at Figs.4.11 and 
4.12. It has to be noted that the control algorithm can modulate the phase angle of the matrix 
converter input current vector ii  only. As a consequence, if the matrix converter is controlled in 
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order to have unity input power factor, the input line currents, i.e. isa, isb and isc, will be always 
leading to some extent the correspondent supply line-to-neutral voltage, due to the current drawn 
by the input filter capacitors. Controlling the matrix converter input current in order to lag the 
voltage, as shown in Fig.4.12, it is possible to compensate the effect of the input filter capacitors 
current on the AC mains power factor, as shown in Fig.4.14.  

But as said before, accordingly to equation (4.27), by choosing a reference phase 
displacement ϕi ≠ 0 the maximum output to input voltage ratio available is reduced. Therefore, 
such compensation of the input filter capacitor current becomes effective only if there is a 
sufficient margin between the theoretical output voltage limit of the matrix converter and the 
maximum voltage level required by the load. Otherwise, the overmodulation operating region is 
entered with consequent distortion of the output and input waveforms. 

The general approach to this problem is not to compensate the input filter capacitor 
current, because at the rated power its effect becomes negligible [6]-[11]. However, this 
approach can become inadequate if the input filter capacitor is oversized with respect to the rated 
load power or if the load working cycle frequently requires low power level operations. In the 
latter case, a dynamic compensation by means of equation (4.26) is possible only if the required 
output to input voltage ratio is also low.  

In Fig.4.16, the effect of the not zero reference input current vector phase displacement is 
shown by the lower, compared to the Fig.4.15 one, minimum instantaneous value of the input 
line-to- line voltage applied to the output. But the overmodulation operating region is not entered, 
as it is shown by the output line current waveform in Fig.4.18, because the required output  
voltage is quite far from the maximum limit, in the case 8360152

3 .cos ≅° . 

 
 
4.5.2 Experimental setup of a Matrix Converter prototype  

 
The three modulation strategies have been implemented on a 7 kVA matrix converter 

prototype during a six month working period with the Institute of Energy Technology at the 
university of Aalborg. The block diagram of the prototype setup can be seen in Fig.4.19.  

The AC mains is provided by an AC Power Source (15003iX California Instruments) 
which allows to generate whatever supply voltages condition and to settle the value of the AC 
mains impedance. 

The input filter is given by a second order LC filter. It is used to reduce the input line 
current ripple and it consists of three series connected inductors (1.2 mH) and three shunt star-
connected capacitors (6 µF). In order to better decouple the input side of the matrix converter 
from the input line inductance, the 6 µF capacitance are splitted in three group of 2 µF per each 
phase. In this way the input lines are decoupled at each power module input. The input filter, 
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designed accordingly to the methodology proposed in [23]-[24], has a resonant frequency of 
1.876 kHz and gives an attenuation of ( YYY dB a 4 kHz da vedere con PSPICE). 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.19 Block diagram of the laboratory setup. 

 
The power  stage of the matrix converter is based upon three special designed power 

modules, realized with 1200V, 25A IGBT’s and fast recovery diodes. Each module contains 
three AC switches and each AC switch consists of two anti-paralleled IGBT’s in common 
collector configuration with series diode. A single common clamp circuit protects the converter 
on the input and on the output side [6], [7]. With regard to the clamp circuit it has to be noted 
that it does not appear in the mathematical model of Fig.4.10. But the influence of the clamp 
circuit during normal operation can be considered negligible since the focus of the analysis is 
pointed to low order harmonic spectra of the input voltages and currents.  

The load consists of a three phase star-connrected R-L load.  
The control system of the converter is constituted by a dual processors board made up by a 

floating-point 32/40 bit digital signal processor (DSP) SHARC 21602 from Analog Device and a 
fixed-point 16 bit microcontroller (µC) SAB80C167 from Siemens. This dual processors 
solution provides a highly flexible tool for testing of control strategies for power electronics 
converters and AC drives.  

The DSP provides intensive and fast calculation capability, it is interfaced to the host 
computer and most of all it is provided with a C-compiler which allows to develop the control 
software using C language instead of assembler. This last feature is a powerful means for 
boosting control system development. 

The µC provides advanced timing functions, as the DSP cycle period and the A/D 
sampling instant, and it is used for generating the SVM pulses pattern. It has the capability to 
interface to the host computer too.  
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The DSP and the µC communicate in the system by way of a dual port RAM. A standard 
PC provides the user with an interface to the DSP and the µC. 

The commutation of the bi-directional switches is managed accordingly to a four step 
commutation strategy based on the detection of the output current sign. The commuation strategy 
is implemented of a programmable logic device, one per output phase. Finally, with regard to the 
control algorithm, for each modulation strategies a simple constant V/f control of the output 
voltage vector was implemented and a double sided configurations switching sequence was used. 

 
 

4.5.3 Sinusoidal and unbalanced supply voltages  
 
The equations shown in the following analysis are derived under the assumption that the 

AC mains impedance and the input filter inductance do not significantly affect the low order 
harmonic spectrum of the AC mains supply voltages, that is the supply voltages as well as the 
matrix converter input line-to-neutral voltage vector is assumed to be defined by ie . 

As aforementioned, in the case of unbalanced sinusoidal supply voltages, only the positive 
and negative sequence symmetrical components are present in the line-to-neutral voltage vector. 
Then, the voltage vector ie  can be written as 

t  j 
i

t  j
ii

ii
1

e E  e E  e ω−ω
−

+=
1

                  (4.53)   

The presence of the negative sequence fundamental component cause variations in both 
magnitude and angular velocity of the input voltage vector whose locus described on the Gauss 
plane is an ellipse, as shown at the beginning of the chapter in Fig.4.1.b.  

In this case, accordingly to equations (4.34) and (4.38), the input voltage disturbance is 
represented by the negative sequence fundamental component, that is 

t  j
ii

ie E=e ω−
−1

∆                     (4.54)   

In Table IV it is shown how the modulation vector ψ  and the input current vector ii  
translate for the three strategies.  

The unbalanced condition which has been considered for the supply line-to-neutral 
voltages is defined by the following time phasors 

o

1
0    V, 300  Ei ∠=    

o

1
0    V, 30  Ei ∠=

−
  thereof  1.

E

E
  u

1

1

i

i
0== −    (4.55)   

where u is defined as the input voltage unbalance degree. 
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Table IV 
Expressions of the modulation and input current vectors for the three strategies. Unbalance. 

Strategy A   t  j 
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The frequency of the input voltages is 50 Hz. The matrix converter has been controlled in 

order to generate a three-phase system of balanced line-to-neutral voltages with a maximum 
amplitude of 132.5 V, which corresponds to an output-to- input voltage ratio equal to 0.43, and a 
frequency of 25 Hz. The switching frequency is 4 kHz. 
 

 
Numerical results 

 
In Table V the values of the system parameters relevant to the following numerical 

simulation results are quoted. 
Table V. 

System parameters value used by simulations under unbalanced conditions. 

LS 

[mH] 
RS 

[Ω] 
RF 

[Ω] 
LF 

[mH] 
CF 

[µF] 
LL 

[mH] 
RL 
[Ω] 

0.277 0.74 ∝ 1.2 6 27 15 

 

In Fig.4.20 the unbalanced and sinusoidal supply line-to-neutral voltages correspondent to 
definition (4.55 )are shown. 

Figs.4.21-4.26 show the input and output line currents waveforms for the three strategies. 
In Figs.4.27-4.32 the harmonic spectra of the input line currents and relevant complex space 
vector are shown for the three strategies. 
As it can be seen by Figs.4.21-4.23-4.25, the input line-to-neutral voltages do not differentiate 
for the three strategies. Consequently, the effect of the input filter capacitance currents can be 
considered as invariant for the three strategies and almost negligible with respect to the active 
power delivered to the load. On the basis of these considerations, the following remarks on the 
input line currents harmonic spectra will be referred to the expressions of the matrix converter 
input current vector ii . 
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Fig.4.20 Sinusoidal line-to-neutral supply voltages for u=0.1. 
 

    
 

    Fig.4.21 Matrix converter input line-to-neutral      Fig.4.22 Matrix converter output line currents. 
    voltages and line currents. 30V/div. Strategy A.           Strategy A. 
 

    
 

Fig.4.23 Matrix converter input line-to-neutral   Fig.4.24 Matrix converter output line currents. 
  voltages and line currents. 30V/div. Strategy B.         Strategy B. 
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Fig.4.25 Matrix converter input line-to-neutral      Fig.4.26 Matrix converter output line currents. 
voltages and line currents. 30V/div. Strategy C.           Strategy C. 
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     Fig.4.27 Harmonic spectra of input line     Fig.4.28 Complex harmonic spectrum of the  

   currents. Strategy A.            the input line current vector. Strategy A. 
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Fig.4.29 Harmonic spectra of input line        Fig.4.30 Complex harmonic spectrum of the 

currents. Strategy B.           the input line current vector. Strategy B. 
 

With regard to the input line currents it can be noted that for strategy B the waveforms are, 
as expected, sinusoidal and unbalanced. This is in accord with the input current vector expression 
quoted in Table IV, where the disturbance is given by only the negative sequence fundamental 
component. The unbalance of the currents is evident by the different amplitude of the three 
currents, which can be better appreciated looking at the fundamental components in Fig.4.29. 
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Fig.4.31 Harmonic spectra of input line      Fig.4.32 Complex harmonic spectrum of the   

currents. Strategy C.            the input line current vector. Strategy C. 
 

It is also worth noting that the phase displacement of the three line currents with respect to 
the corresponding voltage are different. This result is consistent to the strategy B definition of 
the modulation vector ψ , given in Table IV, which establishes that the input current vector is not 
modulated to be instantaneously in phase with the input voltage vector ie  unlikely from strategy 
A.  

In fact, as it can be seen from Fig.4.21, strategy A operates in order to keep, at any instant, 
the vector ii  in phase with the input voltage vector ie . Accordingly to the expression in Table 
IV, the input voltage unbalance degree translates in a proportional input currents harmonic 
distortion, basically represented by a third harmonic component, as shown in Fig.4.27 and stated 
by the ii  expression inTable IV.  

As far as the strategy C is concerned it has an intermediate behavior between strategy A 
and B. It can be seen from Fig.4.25 and verified by the input current vector ii  expression inTable 
IV that the input line currents are both distorted by a third harmonic as in strategy A and 
unbalanced as in strategy B, but to a smaller extent. The reduction of these input current 
disturbances is shown in Fig.4.31, where the amplitude difference of the fundamental input line 
currents component is lower compared to strategy B and the third harmonic component 
amplitude is nearly halved with respect to strategy A. 

With regard to the output voltage performance it is important to highlight that, as shown by 
Fig.4.22, 4.24, 4.26, all strategies are capable of maintaining balanced and sinusoidal output 
voltages even with unbalanced input voltages. 
  In Table VI the performance of the three strategies in terms of input current quality are 
quoted with regard to the input current vector. These RMS values have been calculated using 
equations (4.40) and (4.41) and taking into account the first 11 positive and negative harmonic 
components of the input line current space vector.  
  It can be seen that, accordingly to [19] strategy A provides the lowest RMS value of the 
three phase input line current system, but strategy C is the better performing in terms of 
minimization of the input current disturbance RMS value. 
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Table VI. 
Input line current quality performance. Unbalance. 

 Strategy A Strategy B Strategy C 

RMS
I3  [A] 3.82 4.01 3.84 

RMSii∆  [A] 0.37 0.39 0.29 

 
 
  Experimental results 
 

As aforementioned, the three modulation strategies have been implemented of a 7 kVA 
matrix converter prototype and their performance have been tested under sinusoidal and 
unbalanced input voltage conditions. The experimental results shown in this section relate to a 
comparison of strategy A and strategy B [25].  

In this case the passive load parameters were RL = 12Ω and LL = 0.027H for a 
correspondent total active power delivered to the load of approximately 1.9 kW. This is the only 
difference with respect to the system and control parameters value used for the previous 
numerical simulation results.  

The harmonic components of the three input line currents were measured using a universal 
power analyzer PM3000A fromVoltech. 
 
 
 
 
 
 
 
 
 
 
 

Fig.4.33 Matrix converter input line-to-neutral    Fig.4.34 Matrix converter input line-to-neutral 
  voltages and line currents. Strategy A.        voltages and line currents. Strategy B. 

  100V/div and 2.5A/div.             100V/div and 2.5A/div. 
 

Looking at Figs.4.33-4.36, it can be stated that the experimental results are in good 
accordance with the numerical ones. In Figs.4.37 and 4.38 the harmonic spectra of input line 
currents isa and isb are compared for the two strategies. It is evident the cancellation of the third 
harmonic component carried out by strategy B. The same holds for current isc obviously. With 
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regard to strategy A it is also worth noting that the third harmonic to fundamental amplitude ratio 
is nearly equal to the input voltages unbalanced degree, u = 0.1, as predicted by the linearized 
analysis (Table IV). 
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   Fig.4.35 Harmonic spectra of input line         Fig.4.36 Harmonic spectra of input line 

currents. Strategy A.           currents. Strategy B. 
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  Fig.4.37 Harmonic spectra of input line      Fig.4.38 Harmonic spectra of input line 

      current ia. Strategy A and B.           current ib. Strategy A and B. 

  In Table VII the data collected during the experimental measurements are quoted. Some 
comments can be made. 

Table VII. 
Measurement data. 

 Strategy A Strategy B 

Quantity Phase a Phase b Phase c Phase a Phase b Phase c 

Voltage  (V) 232.5 201.6 201.7 232.5 201.6 201.7 

Line Current RMS (A)  3.08 3.07 3.00 2.81 3.09 3.28 

Active Power  (W) 708 612 593 628 640 607 

Reactive Power (Var) 134 116 115 104 140 142 

Apparent Power (VA) 720 624 603 637 655 624 

Power Factor 0.983 0.982 0.981 0.986 0.976 0.973 

THDv    % 1.3 1.3 1.1 1.1 1.5 1.5 

THDi  % 17.7 16.8 17. 15.0 13.9 13.9 

HD11   % 9.7 9.8 9.5 1.5 1.9 1.8 

Three Phase  
RMS

I3     (A) 5.28 5.3 

[A] [A] 

[A] [A] 
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Looking at the power factor and line current amplitude values it is confirmed that strategy 
B determines an unbalance in the input line currents. For strategy A the input line currents 
system is nearly balanced: the current RMS values for the three phases are nearly the same. The 
power factor is not as close to unity as it would be expected because of the current drawn by the 
input filter capacitance, which determines a slight leading displacement of the input line current. 

As far as the input power quality is concerned it has to be highlighted the significant 
reduction of the low order current harmonic components carried out by strategy B compared to 
strategy A as shown in Table VII by the distortion factor HD11. Considering the line current total 
harmonic distortion factor THDi, the improvements obtained by strategy B are still significant 
but to a smaller extent. This is due to the relevant amplitude of the switching harmonic 
components whose squared value is taken into account by the power analyzer for calculating the 
THDi. 

Looking at Table VII, strategy B compared to strategy A determines a slightly higher three 
phase RMS value for the input line currents as shown by I3RMS. This result is in accord with the 
theoretical analysis which would expect for strategy A the minimum three phase RMS value for 
the input line currents. 

In Figs.4.39 and 4.40 the experimental loci of the input line current and line-to-neutral 
voltage vectors for strategy A and strategy B are shown. The current locus for strategy B is a 
pure ellipse whereas for strategy A the shape is distorted, basically from the third harmonic 
component. 
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  Fig.4.39 Input line current and line-to-neutral     Fig.4.0 Input line current and line-to-neutral 
   voltage vectors loci for strategy A.        voltage vectors loci for strategy B. 
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4.5.4 Nonsinusoidal and balanced supply voltages  
 
As for to the previous case of unbalance, even when the supply voltages are nonsinusoidal 

and balanced, both magnitude and angular velocity of the input voltage vector ie  vary due to the 
presence of the harmonic components. The operating condition that has been considered is 
defined by the following time phasors 

o

1
0    V, 300  Ei ∠=    

o
0    V, 15  Ei ∠=

+7
   

o
0    V,9  Ei ∠=

−11
     (4.54)   

As a consequence, the matrix converter input line-to-neutral voltage vector ie  and the 
input voltage disturbance vector ie∆  are respectively given by  

t 11 j 
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t 7 j 
i
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iii
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             (4.55)   

t 11j
i
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ii

ii e Ee E=e ω−ω
−+

+
117

∆                 (4.56)   

In the same way as for the unbalance case, it is possible to define for any harmonic 
component of the input voltage vector a distortion degree d . In the case the distortion degrees 
are given by  

0507 .
E

E
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Table VIII. 
Expressions of the modulation and input current vectors for the three strategies. Distortion  
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In Table VIII it is shown how the modulation vector ψ  and the input current vector ii  
general expressions translate for the three strategies. As for Table IV, the equations assume that 
the supply impedance and the input filter do not significantly affect the low order harmonic 
spectrum of the AC mains supply voltages, therefore ie  can be considered the AC mains supply 
voltage vector as well as the matrix converter input line-to-neutral voltage vector. 

As in the previous case the frequency of the input voltages is 50 Hz. The matrix converter 
has been controlled in order to generate a system of balanced line-to-neutral voltages with a  
maximum amplitude of 132.5 V and a frequency of 25 Hz. The switching frequency is 4 kHz. 

 
 
Numerical results 

 
  The values of the system parameters related to the following numerical simulation results 
are still those quoted in Table V. In Fig.4.41 the balanced and nonsinusoidal supply voltages for 
the operating condition defined by (4.54) are shown. 
 

 
 

Fig.4.41 Nonsinusoidal and balanced line-to-neutral supply voltages. 
 

Figs.4.42-4.27 show the input and output line currents waveforms for the three strategies.  
As it can be seen by Figs.4.42-4.44-4.46, the input line-to-neutral voltages do not 

differentiate for the three strategies. Consequently, the effect of the input filter capacitance 
currents can be considered as invariant for the three strategies and almost negligible, in terms of 
input line current phase displacement, due to the active power delivered to the load.  

But in this case, the input filter capacitance current has the effect to conceal the 
performance of the three strategies. Two are the reasons basically. 

The first is that any matrix converter modulation strategy exerts its control capability only 
on the input line current component which is fed to the output load, but it has no control of the 
input filter capacitance current. 

[V] 
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Fig.4.42 Matrix converter input line-to-neutral      Fig.4.43 Matrix converter output line currents. 
voltages and line currents. 30V/div. Strategy A.         Strategy A. 

 

     
Fig.4.44 Matrix converter input line-to-neutral    Fig.4.45 Matrix converter output line currents. 
voltages and line currents. 30V/div. Strategy B.        Strategy B. 

     
Fig.4.46 Matrix converter input line-to-neutral    Fig.4.47 Matrix converter output line currents. 
voltages and line currents. 30V/div. Strategy C.        Strategy C. 
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The second is that any voltage harmonic component which is present on the grid produces 
an equal order current harmonic component to be drawn by the filter capacitors. The percentage 
of such harmonic component in the line current spectrum decreases when the converter input 
current increases, that is when the power to the load rises. On the contrary, the current harmonic 
components introduced by the modulation strategies maintain an approximately constant relative 
amplitude. 
  With respect to the operating condition here considered for both simulations and 
experimental tests, although the power delivered to the load is sufficient to assume almost 
negligible the effect of the input filter current on the power factor, it is not sufficient to allow a 
clear analysis of the performance of the three strategies. 

Therefore, the figures of the harmonic spectra shown hereinafter will be referred to the 
matrix converter input current. Moreover, on the basis of the calculated harmonic spectra, which 
have shown that the fundamental component value of the input line currents does not change for 
the three strategies (differences are in the range of ± 0.3 % ≅ 10 mA) the scale of the y axis is set 
linear and limited to 10% of the fundamental component amplitude. 
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   Fig.4.48 Harmonic spectra of matrix converter   Fig.4.49 Complex harmonic spectrum of the  

     input currents. Strategy A.         input current vector. Strategy A. 
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Fig.4.50 Harmonic spectra of matrix converter    Fig.4.51 Complex harmonic spectrum of the 

input currents. Strategy B.         input current vector. Strategy B. 
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  Fig.4.52 Harmonic spectra of matrix converter    Fig.4.53 Complex harmonic spectrum of the 

input currents. Strategy C.          input current vector. Strategy C. 
 

Looking at Figs.4.42-4.44-4.46 it can be seen that the input line currents are no longer 
unbalanced but the waveforms are significantly distorted. In Figs.4.43-4.45-4.47 the output line 
currents are shown. It is evident that, even under distorted input voltages conditions the three 
modulation strategies are capable of maintaining balanced and sinusoidal output voltages. 

In Figs.4.48-4.49 the harmonic spectra of the matrix converter input currents and relevant 
vector are respectively shown for strategy A. In good accord with the input current vector 
expression given in Table VII, vector ii  presents a negative sequence harmonic component of 
order k = -5 whose amplitude is proportional to the distortion degree d+7 and a positive sequence 
harmonic component of order k = +13 whose amplitude is proportional to the distortion degree 
d-11, as it can be seen in Fig.4.49. 

In the case of strategy B the harmonic spectra still meet the linearized analysis expectation. 
In particular, the harmonic components have the same order of the input voltage harmonics and 
the magnitude is proportional to the relevant distortion degree. However, comparing the spectra 
of the two strategies, it can be noted that the “amount of distortion” does not change 
significantly, as the current harmonic components are just swept to different harmonic order. 

With strategy C the harmonic spectra change. The effect of each input voltage harmonic 
component is splitted onto different current harmonic orders which have a magnitude that is 
proportional to half of the distortion degree value of the input voltage harmonic component in 
object. The effect, as stated above, is a reduction of the total RMS value of the input current low 
order harmonic content with consequent improvement of the input current total harmonic 
distortion. 

In Table IX the performance of the three strategies in terms of input current quality are 
quoted. In this case, the RMS values have been calculated taking into account the first 15 
positive and negative harmonic components of the input current space vector. It can be noted that 
strategy C still provides the best performance with respect to RMS value of the input current 
disturbance while strategy A give the lowest three phase RMS value. 
 
 

[%] [%] 

  -13        -11                                  -5                -2                 1                 4                  7                                   13         15 
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Table IX. 
Matrix converter input current quality performance. Distortion. 

 Strategy A Strategy B Strategy C 

I3RMS [A] 3.27 3.27 3.28 

RMSii∆  [A] 0.248 0.234 0.185 

 
 
  Experimental results 
 

Under the nonsinusoidal and balanced supply voltages condition defined accordingly to 
(4.54) strategies A and C have been experimentally tested and compared. The values of the load 
resistance and inductance was set to 13 Ω and 27 mH respectively. The frequency of the input 
voltages is 50 Hz. The matrix converter has been controlled in order to generate a three-phase 
system of balanced line-to-neutral voltages with a maximum amplitude of 132.5 V and a 
frequency of 25 Hz. The switching frequency is 4 kHz. 

The harmonic components of the three input currents have been measured using a 
universal Power Analyzer PM3000A from Voltech. A TDS3014 Oscilloscope and a AM503 
Current Probe Amplifier from Tektronix have been also used for measurements and currrents 
harmonic spectrum determination. 
  For displaying purpose, the scale of the y axis in the harmonic spectra figures is set linear 
and limited to 10% of the fundamental component amplitude as for the numerical results. 

In Fig.4.54 the harmonic spectrum of the input line current isa is compared for the two 
strategies. In Table X the corresponding harmonic distortion factor HD15 values are quoted. By 
looking at these figure and data, no significant differences can be appreciated between strategy A 
and strategy C and the harmonic content is not in accord with the linearized analysis results. The 
performance of the two strategiesi are hidden by the current drawn by the filter capacitors. 
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Table X. 
Harmonic distortion factor HD15 of the input line currents. [%] 

 line a line b line c 
strategy A 11.2 11.2 11.2 
strategy C 10.9 10.9 10.9 

 
In order to exclude the effect of the input filter capacitor currents from the line current 

harmonic spectrum and make evident the performance the two strategies, the following three step 
measurement procedure has been used: 

i) the input line current waveform was firstly acquired, by an oscilloscope, with matrix 
converter not operating; 

ii) the input line current waveform was secondly acquired with the matrix converter 
operating to the settled condition;  

iii)  the first waveform was subtracted to the second one and a Fourier analysis was 
performed on the resulting waveform. The waveform acquisitions at point i) and ii) 
were synchronized to the same input line to neutral voltage. 

By means of this procedure it is possible to determine a reliable low order harmonic 
spectrum of the matrix converter input current.  

In Fig.4.55 the harmonic spectrum of the input current ia is shown for strategies A and C. It 
can be seen that the harmonic spectra are now consistent with the numerical results as well as 
linearized analysis expression of the input current vector quoted in Table VIII.  

For strategy A only two current harmonic components are evident, those having order 2-k. 
For strategy C these harmonic components have the amplitude nearly halved and two new 
harmonic components of k order are introduced.  

In Table XI the harmonic distortion factor HD15 and the three phase RMS value of the 
matrix converter input currents system, calculated accordingly to equations (4.51) and (4.52), are 
quoted.  

Table XI. 
Harmonic distortion factor and three phase RMS value of the matrix converter input currents 

strategy A strategy C 
 

line a line b line c line a line b line c 

HD15 [%] 6.2 6.2 5.7 4.4 4.6 4 

I3RMS  [A] 2.9 2.95 

 
Table XI clearly shows that strategy C brings about a significant reduction of the input 

current harmonic distortion with respect to strategy A. But strategy A still have the minimum 
three phase input current RMS value.  
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It is here important to point out that the results shown in Table XI hold for the input line 
currents too increasing the power to the load. As the output power delivered to the load is 
increased as much the effect of the input filter current on the input line current is reduced. 

The I3RMS values quoted in Table XI have been calculated on the basis of the first 15 
harmonic components of the input current waveforms determined at step iii) of the above 
measurement procedure. The Blackman-Harris window of the oscilloscope has been used to 
perform the fast Fourier transform (FFT) of the input currents. 

In Fig.4.56 the harmonic spectrum of the input current ia obtained by means of the 
oscilloscope FFT utility is shown. The scale on the y axis is linear and limited to 10 % of the 
fundamental. The scale on the x axis is also linear with 250Hz per division.  

 
 
 
 
 
 
 
 
 

Fig.4.56 Harmonic spectrum of the matrix converter 
input current ia by the oscilloscope.2.5 % / div. 

In Fig. 4.57 the waveform and the relevant harmonic spectrum of the output currents 
generated by both strategies are shown. This figure shows that both strategies even under 
nonsinusoidal supply voltages are able to maintain a balanced and sinusoidal output voltage 
system. In this case the correspondent currents did not present any harmonic component which 
exceeds the 0.6% of the fundamental.  

 
 
 
 
 
 
 
 
 

Fig.4.57 Output line current waveform and relevant  
harmonic spectrum. 20 Hz output frequency. Strategy C. 
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With regard to the waveform on the y axis the scale is 5A per division; on the x axis is 
10ms per division. For the harmonic spectrum, on the y axis the scale is 20dB per division; on the 
x axis is 250 Hz per division and it is linear. 

In Table XII the data measurements collected by the power analyzer are quoted. Looking 
at the active power it has to be noted that the three phase value, which can be practically viewed 
as the output power to the load, is basically the same for the two strategies. This is an important 
data since it verifies one of the basic assumption made by the linearized analysis. 

Finally, as expected even the three phase value of the input line current is lower for 
strategy A. 

Table XII. 
Measurement data for distortion. 

Strategy A Strategy C 
Quantity 

Phase a Phase b Phase c Phase a Phase b Phase c 

Voltage  (V) 219.2 219.2 219.3 219.1 219.2 219.3 

Line Current RMS (A)  2.41 2.4 2.43 2.47 2.45 2.68 

Active Power  (W) 516 514 518 521 520 522 

Reactive Power (Var) 126 113 124 146 134 143 

Apparent Power (VA) 642 627 642 667 654 665 

Power Factor 0.972 0.976 0.973 0.962 0.968 0.964 

THDv    % 6. 6 6 6 6 6 

THDi  % 22.3 20.6 22.3 22.1 20.4 22.2 

Three Phase I3RMS    (A) 4.18 4.39 

 
 
4.6 Conclusions  
 

  Three modulation strategies for space vector controlled matrix converters have been 
presented. As the matrix converter has no internal energy storage, disturbances in the input 
voltages will be coupled directly to the output terminals of the converter. If the input voltages are 
unbalanced and/or distorted it is necessary to compensate such disturbances in order to maintain 
balanced and sinusoidal output voltages.  

But carrying out this compensation, low order harmonics will be generated in the converter 
input currents.  

The three strategies, A, B, C, differ for the direction along which the input current vector is 
modulated.  

Strategy A operates in order to keep at any instant the input current vector ii in phase with 
the input line-to-neutral voltage vector ie , that means instantaneous unity input power factor.  

For strategies B and C the input current vector ii is dynamically modulated along a 
direction which oscillates around the input voltage vector ie . Higher the input voltage 
disturbance higher the oscillation. Nevertheless , unity input power factor is obtained on the 
fundamental period average. 
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On the basis of a linearization of the matrix converter input/output equations the 
performance of these three strategies have been analysed. The input current quality has been 
evaluated by the criteria of three phase RMS value (line losses), total RMS value of the input 
current disturbance and a low order harmonic distortion factor. 

Numerical simulations have been firstly carried out to verify the analysis. The three 
modulation strategies have been then implemented on a matrix converter prototype with the 
Institute of Energy Technology at the university of Aalborg, Denmark. Tests have been carried 
out either under unbalanced or distorted supply voltages conditions. The collected results, with 
respect to the strategies performance, have confirmed the linearized analysis validity showing 
good accordance with the numerical results. 

It is concluded that within the accepted range of unbalance and distortion, strategy C might 
be preferred to the more straight- forward and commonly implemented strategy A as it provides 
an appreciable reduction of the input current disturbance RMS value and consequently of the 
input current harmonic content. Strategy B might be preferred in special condition where highly 
unbalanced supply voltages exist.  
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