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Foreword 

This work 

1 Aim of the work 

The aims of this work are basically: 

1. to state the possible contribution of the Symbolic Calculus to two of the 
problems of electrical engineering, that are: 

• analysis of electric circuits; 

• diagnosis of electric circuits; 

2. to study a method and an implementation of the suggested contribution. 

2 Structure of the work 

Accordingly to the aim of the work, the matter exposition has been structured to 
outline first a general frame about Symbolic Calculus and then to give more details 
on particular contributions about the mentioned problems. 

2.1 Chapter I 

A definition of Symbolic Calculus is given, and the state-of-the-art of this 
engineering approach is presented with its advantages and drawbacks, to identify 
some fields of interest for the electrical engineering. 
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2.2 Chapter II 

2.2.1 Part One 
The new symbolic formulation of the known Inhibition Method can avoid or 
reduce the typical limitations which the Symbolic Calculus suffers from, due to its 
intrinsic nature. This method offers some other interesting features as well. 

2.2.2 Part Two 
The symbolic formulation of this method allows several software implementations 
of a symbolic processor oriented to wide linear circuits. The general symbolic 
formulation and the kernels of the implementations are presented to be a general 
method that has reflections on circuit diagnosis and analysis. 

2.3 Chapter III 

2.3.1 Part One 
The symbolic approach and an efficient symbolic processor, based on the 
Inhibition Method, lead to an original contribution in linear electric circuit 
diagnosis: the Cycling Verify Method. It is a symbolic technique to locate and 
identify faults in linear circuits. The embedded interval algebra at the symbolic 
formulation level allows to take into account parameter tolerances and 
uncertainties, in a transparent way. 

2.3.2 Part Two 
Some other remarks are reported about the Inhibition Method and diagnostic 
techniques, with particular reference to a proposed improvement to multifrequency 
based techniques. 

2.4 Chapter IV 

The same symbolic approach and processor lead to contributions to circuit analysis 
as well. 

2.4.1 Part One 
An improvement of the Threshold Technique, dealing with switching circuits, 
introduces the event-driven principle and a calculation procedure starting from the 
general symbolic solution. This fact avoids some known problems, like 
convergence. 

2.4.2 Part Two 
An original contribution to resistive piecewise-linear circuit analysis consists in an 
elegant symbolic approach to this kind of non-linearity. Once this non-linearity is 
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(in some way) “hidden” to the symbolic processor, the formulation and the solving 
process become purely linear. 

2.5 Chapter V 

A software environment for virtual instruments has been investigated to study the 
possibility to integrate diagnostic procedures and symbolic algorithms in a 
user-friendly tool for electrical system analysis and diagnosis. 

2.6 Conclusions and references 

Conclusions are reported at the end of each chapter or at the end of each part of the 
chapter, if it is subdivided in different main sections: each section has its own 
conclusion paragraph.  
References are organized in the same way. In each block, numbering restarts from 
“1” to make easier reading. 
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Chapter I 

Goals and views 

1 Symbolic calculus 

The key sentences that define the Symbolic Calculus (SC) are basically: 

• literal calculus; 
• operations on formal relationship (equations, inequations, rules, sets, etc.); 
• integration of an advanced programming language. 

It is clear that SC is, but it is not limited to, literal calculus. It works with abstract 
quantities and their formal relationships to extend the capabilities of the Numeric 
Calculus (NC). A numeric program normally takes specified numbers as input 
and yields numbers as output again, referring to the prefixed unknown quantities. 
Of course, this numeric output can further collected to produce graphs, for 
example, or some other kind of report, to have information about quantity 
courses or about correlations between quantities. But in any case it is a matter of 
numeric estimation of relations and not of analytical relations. Therefore SC is 
told to be more general: it can produce the same results, because analytical 
expressions can be numerically evaluated to produce numbers, but it adds the 
explicit information about quantity correlations. 
Furthermore, SC integrates a programming language with advanced functions not 
only to calculate or to solve problems, but to manipulate the resulting expressions 
and formulas, like factorization, coefficient extraction, integration and many 
other conceptual operation that the user normally does by the abstract and 
mathematical thinking. In this manner, SC brings the problem formulation near to 
the natural way of thinking of the user and thus it is a convenient and reliable 
programming approach to get general solutions. As a matter of fact, a simulation 
that needs to be repeated many times, can be easily programmed and performed 
once and for all in symbolic way while the resulting symbolic solution can be 
further repeatedly evaluated with different parameter values, with a minimal 
workload. 
So, it is possible to summarize the importance of SC [1] mainly in: 
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• problem formulation in a natural way of thinking; 
• extraction of relationship between parameters; 
• solution in general terms. 

SC has also drawbacks, of course, and thus the state of the art comprises a variety 
of proposals, depending on the aim and the optimization needed, as can be 
understood in the next sections. 

2 Goals 

Analysis and diagnosis of electric circuits make often provision of repeated 
simulations and calculations that are formally identical but which are performed 
by different situations of rated values. A general symbolic solution, repeatedly 
evaluated in numeric terms seems well to be complementary to existing analysis 
and diagnosis techniques. Examples could be: 

• fault dictionary generation: the same network function is measured and 
plotted when one ore more parameters are varying in a given range; 

• sensitivity calculations: basically, the same network function has to be 
derived with respect to several parameters; 

• research of parameter correlations: if an exact relation is needed, then it is 
the right task for SC; if an approximated relation is needed, then a symbolic 
expression could be either symbolically simplified or numerically evaluated 
and then approximated. 

Moreover, considering that modern environment for SC are capable of 
sophisticated manipulations of literal expressions and rules, and that they can 
connect to other software applications, the direct symbolic formulation of a 
problem (in terms of abstract  quantities, formal equations and inequations, rules, 
etc.) seems to allow original procedures that are not possible if only numerical. 
So the goals of this work are mainly set on three things: 

• verify the benefit of SC in electric circuit analysis and diagnosis; 
• use of SC to improve some existing technique; 
• original contribution of SC to new techniques. 

These aims have to be pursued taking into accounts the following drawbacks. 

3 Problems 

SC environments are complex software packages and their main common 
problems [2] are: 

• memory consumption; 
• unmanageability of long expressions. 

The internal data structures of symbolic expressions, in fact, are basically 
character strings of variable length and various format. In a word: symbolic 
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processors work with unstructured data. The main drawback is not the increased 
CPU time cost to deal with unstructured rather than structured data, but is the fact 
that during the generation of a resulting symbolic expression these data 
proliferate exponentially. 
Checking Fig. 1, it is easy to understand that to perform a numerical evaluation of 
a sum of n numbers we need memory space for n+1 number containers: the first 
n for the given numbers and one that will contain, time after time, the sum of the 
current addendum and the sum of the preceding numbers. This last container has 
the same length and memory occupation of the other ones. On the other hand the 
symbolic evaluation of a sum of n expressions still needs n+1 containers (which 
are themselves memory wider than numbers, normally), but if no cancellation 
occurs between the input expressions, the result container will carry an 
expression which will be long at least as the sum of the lengths of the input 
expression (without counting control and formatting data). 
 

 

Fig. 1: Proliferation of symbolic data. 

 
Thus, the main drawback of SC is memory consumption. This fact bounds 
enormously the dimension of the problem (in our case, of the circuit) to be 
solved. 
Over this disadvantage, that relies on hardware resources, there is a second one 
that relies on the user side. In fact, complete symbolic expressions for wide 
circuits are very long, no matter where they come from, obtained by hand or from 
the symbolic processor: a network function for a hundred-parameter circuit could 
not fit on a page. Symbolic results are often unusable for a visual inspection by 
the operator, due to their complexity and unreadability. This is a great penalty, 
for example, during a design process, where the last tuning of a circuit is 
frequently delegated to the user and not to an automatic procedure. 
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There are remedies, of course, to these drawbacks, but they are often 
incompatible with other needs, as discussed in the next section. 

4 Solutions 

4.1 Decreasing the number of symbols 

The first, obvious, remedy to both memory consumption and user-unreadability is 
to reduce the number of symbols in the expressions, that is, only the most 
interesting parameters are left literal, while the other ones are set to their 
numerical values. In this way, the input expressions are more compact, the 
program execution is faster, and the final result is not so complicated and more 
readable. These things are paid, of  course, by a loss of information and 
generality about the solution. 

4.2 Symbolic approximation of expressions 

The symbolic approximation consists in generating simplified non-exact 
expressions, maintaining all parameters literal. Relations between parameters are 
simplified accordingly to particular neglecting criteria. This approach shares the 
same advantages and disadvantages of all approximated methods, but it offers the 
possibility to get a complete symbolic solution, easy to be read and manipulated 
by the user, and more compact to be stored in memory. This feature is still paid 
by a loss of information (which could be not so irrelevant) plus an increased 
calculation time, due to the simplification procedures. 

4.3 Functional/mathematical disaggregating of the circuit 

A large electric network leads, during the solution generation, to very large and 
complex symbolic expressions, which are difficult (when not impossible) to 
calculate due to memory constraints. 
If the network become decomposed in several smaller networks, then each 
sub-network can be easily solved in turn by the symbolic processor, that could 
rebuild the whole general solution from the partial ones, avoiding the 
simultaneous generation of a great part of memory wasting expressions. The 
decomposition can be done in terms of functional blocks or following abstract 
mathematical rules. 
The first case is very useful when the circuit input data are given as network 
layout, that is when the circuit description is near its physical realization: it is 
also possible to generate a library of symbolic expressions related to the most 
common functional blocks, in order to re-use previous partial calculation to save 
memory and CPU time. This is possible due to the generality of the symbolic 
solution, no matter the parameter values are, which constitutes a kind of abstract 
model of the block. 
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The second case operates directly on the circuit description in terms of equations. 
This allows a great variety of transformations and manipulations to get reduced 
equations, easier to solve. Of course, all partial solutions have to be anyhow 
recollected to rebuild the general solution. 
It is clear, that this approach lowers memory consumption but rises time 
consumption, due to the decomposition-recollection process. 

4.4 Spreading a single expression over a sub-sequence of 
shorter expressions 

During the generation of the solution expression, partial expression are not 
colleted and algebraically compound in a new symbolic expression, but they are 
labeled and organized (following specified criteria) in a kind of database; the new 
expression is given as relationship between sub-expression, referred as 
place-holder label. The resulting expression is very compact, and when the 
sub-expressions are referring to well identified circuit blocks, it can be more 
easily used in the design phase, for example. 
This remedy is similar to the “circuit decomposition”, but it differs from it 
basically in the fact that the final symbolic solution is not immediately and 
explicitly calculated, while partial or intermediate calculations are saved on mass 
storage media, and then retrieved when needed. 

5 State-of-the-art 

Nowadays there are some commercial and non-commercial symbolic processors 
oriented to electric circuits and they are collected with their main features in 
Table 1, taken from the work of Fernàndez and Rodrìguez-Vàzquez [2]. This 
table highlights some relevant aspects about symbolic processors: 

• only one is capable of hierarchical analysis by disaggregating circuits; 
• very few have capabilities of managing general expressions (they are often 

limited to s-domain calculations) or capabilities of further symbolic 
computations (like pole extraction, sensitivity, etc.); 

• almost all are stand-alone applications written in a low level language, not 
a complete symbolic environment; 

• they normally need high-level hardware resources (workstations). 
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Table 1: State-of-the-art for symbolic processors. 
 

 
 

 

6 Synthesis prospect 

Trying to overcome the typical limitations of SC, a symbolic processor should 
hopefully have this features: 

• ability for wide circuits, even if running on standard hardware (PCs); 
• good compromise approximation-manageability of the symbolic solution; 
• tools for extended expression manipulation (to perform other tasks than 

solving). 

Now, it’s clear that there is a definite need for a method that should allow SC for 
wide circuits, but to date, there is not a method without drawbacks. The best 
proposals are combinations of the previous discussed solutions, depending on the 
optimization requested. If the generation of an exact symbolic solution, without 
approximation, is “a must”, then the only way seems to be the renounce to the 
visual inspection of the formulas. This disadvantage can be mitigated if the 
method is well integrated in a complete symbolic environment, equipped with 
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advanced functions for the symbolic-algebraic manipulation, like integration, 
derivation, transformation, plotting, etc. 
Thus, a synthesis prospect on symbolic processors devoted to electric circuits 
recalls the search about a method that has to be: 

(1) intrinsically memory sparing 
(2) and easily implementable in a symbolic programming environment. 

In a strange manner, an old numeric method seems to be a good candidate, as 
outlined in the next chapter. 

7 References 

[1] R. Germundsson. Viewpoint: THE IMPORTANCE OF  SYMBOLIC 
PROGRAMMING. IEEE Spectrum 1999. 

[2] F. V. Fernàndez, A. Rodrìguez-Vàzquez: SYMBOLIC ANALYSIS 
TOOLS - THE STATE-OF-THE-ART. IEEE 1996. 
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Chapter II 

The old Inhibition Method as new symbolic 
processor 

1 Part One - Formulation 

Part One is intended to show a general method that relies on the superposition 
principle to analyse linear systems and electric circuits, based on hierarchical 
sequences of more simple topologies with some inhibited elements and on a short 
recollecting logic to calculate the final solution from the previous partial and 
more elementary solutions. 
In Section 1.1, 1.2 and 1.3, will be mentioned the origin of the method, why it is 
general and some its global features. 
In Section 1.4 will be exposed the non-disciplinary theory of the method. This 
originally anonymous theoretical formulation can be particularised to other field 
of interest specific formulations, and due to its intrinsic symbolic constitution this 
method can be directly used to get symbolic solutions from the system which is 
being applied to, or even be re-formulated in different algorithmic ways to 
optimise some aspects like memory or time consumption, appearing to be a good 
candidate for doing SC. 
Implementations of this method will be discussed in Part Two. 

1.1 Brief history and overview of the method 

The Inhibition Method (IME) is an iterative exact non-inverting method to solve 
any linear system, derived from the Cross method, which is, on the contrary, a 
non-exact method and from which IME inherits the fundamental characteristic of 
decomposing the problem into sub-problems easier to solve. It produces a 
hierarchical sequence of sub-systems [1], at the end of which only elementary 
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systems can be found. Therefore, they can fast be solved with the minimum 
knowledge, that is, few program code lines are needed. 
The problem splitting process is founded, in fact, on the possibility (see Fig. 2) to 
deduce the properties of the system (a) from two more simple sub-systems (b) 
and (c), obtained from (a) suppressing or inhibiting a component. 
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Fig. 2: IME logic. 

 
The same idea can work on the sub-systems (b) and (c), that can be deduced each 
from an other couple, respectively (d-e) and (f-g), suppressing other components, 
and so on. At the end of the splitting process we come to sub-systems so simple 
that they can be solved immediately. For example a linear electric network can be 
repeatedly split into more simple networks with an inhibited branch until they 
become one-loop circuits. A similar ground basis is used in [2]. 
The recollecting logic, which will be demonstrated later in detail, is very simple 
as well. As a matter of fact, if a variable (a) consists of the sum of other three 
variables (b), (c) and (x),  

xcba ++= , 

where (x) is proportional to (a) through a constant (k), 

akx ⋅= , 
it follows that 

(Eq. 1) 
k

cb
a

−
+=

1
,  

which is the symbolic formula that synthesises the link between a generic system 
(a) and the two sub-systems (b) and (c) derived from it. The demonstration is not 
difficult as well, because it is organised following the “Short Didactics” (SD) 
criteria [3]: the unifying element of several steps of the proof is put in evidence 
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and collected to shorten and clarify the proof itself, realising a kind of “internal 
contraction” [4]. 
The first IME version [5] was only for numeric calculations and it was based on a 
laborious algorithm which had been working fine because it allowed to go round 
the heavy memory constraints for huge systems to solve. Here it is presented a 
new version of the method that really becomes a general method with the use of 
modern software tools. 

1.2 Weakness and strength 

From the previous overview of the method, it comes out its intrinsic nature, 
which carries advantages and disadvantages, of course. 
Disadvantages are that: 

• the basic algorithm is laborious; 
• from the numeric computational point of view is slow. 

These are the main reasons because this method is no more used today. 
But, as explained in the previous chapter, it has advantages that could contribute 
to limit common problems in SC, like: 

• disaggregating the circuit, as can be seen in Fig. 2 and in the introductory 
example of Section 1.3 below; 

• disaggregating expressions, as can be understood considering that the very 
simple formula of (Eq. 1) is repeated at every iteration instead of a single 
complex expression; 

• minimization of memory consumption, due to disaggregating-collecting 
logic which works on few elements at a time. 

Furthermore it has not to be underrated that it is a general method for several 
reasons. As a matter of fact, it can be applied in every field if the system to solve 
is linear (or made linear). The following anonymous formulation emphasizes this 
fact, because there is no reference to the physical nature of the system, thus, 
“anonymous” stands for inter-disciplinary and indicates a general method all over 
the linear world. 
From this formulation, discipline-specific methods can be derived simply by 
carrying out the related rules, intrinsic to that particular discipline, as could be 
seen in one of the next sections, where the electric formulation is given. Adding 
to this some specific knowledge, like the modified nodal analysis, a complete 
software tool can be realized for electric circuits.  
Symbolic programming is a quite recent phase in the evolution of programming 
but has now reached relevance and importance in engineering [6,7,8,9,10,11]. 
Other advantages of the suggested contribution relies, in fact, on the advanced 
features of commercial symbolic processors, like Mathematica, which are able 
to widely manipulate expressions, to draw any kind of graphics and to 
automatically generate program source code. 
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Due to the presence of such symbolic processors, which allow to manage more 
abstract quantities other than only numbers, the anonymous formulation can be 
directly transferred to a computer program to make a general tool for linear 
system solving and, last but not least, to solve it in a complete symbolic form, 
giving a more general character to the solution found, leaving away the pure 
numerical computation field.  

1.3 An introductory example 

The anonymous formulation is not too complicate, but it could be a little hard to 
understand because it is really abstract. An introductory example should show the 
method basics in a practical way. Let’s consider the very simple resistive circuit 
Fig. 3. This is a 3-loop circuit: a possible tree could be that one depicted Fig. 3b 
with numbered main loops. 

 

A B
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�
�

� �

 
 

(a): resistive circuit (b): tree, co-tree, loops (c): symbolic names 

Fig. 3: Sample circuit. 

IME performs a decomposition of the starting circuit into three elementary 
(one-loop) circuits corresponding to the main loops, shown in Fig. 4, where each 
loop is supplied with an unitary voltage source in the co-tree branch, regardless 
of the originary supply value. These three elementary circuits are first solved 
independently as reported (symbolically) in Fig. 5, and then the procedure 
continues rebuilding the complete solution of the starting circuit, following a 
recollecting logic. This logic uses “special” quantities to link and deduce the 
general solution from the different elementary ones: inhibition quantities. In this 
case, as depicted in Fig. 6 with slashed greyed symbols, inhibition quantities are 
voltage sources. Their values have to be calculated to get just zero current in the 
branch (seat) where they are placed, in order to render the starting circuit a 
virtual one-loop circuit, that is, a three-loop circuit with two co-tree branches 
inhibited (Fig. 4 and Fig. 6 compared). This is called inhibition level 3. The next 
generation of circuits (inhibition level 2) basically consists of the same three-loop 
circuit with only one co-tree branch inhibited, as shown in Fig. 7. The solution of 
these circuits is deduced from level 3 via Inhibition Theorem (see previous 
Section 1.1 or following Section 1.4.3). In the same way, level 1, which is the 
final level, with no inhibited branches, can be deduced from level 2, giving the 
final solution for the starting circuit of Fig. 3. 
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Fig. 4: Elementary one-loop circuits from the sample circuit. 

   
Fig. 5: Simplified schemes for the elementary one-loop circuits. 
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Fig. 6: IME elementary regimes of the sample circuit (inhibition level 3). 

Fig. 7: Hierarchical deduction of circuits “less inhibited” (inhibition level 2). 
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1.4 Anonymous (symbolic) formulation 

IME can be used in solving any physical linear system. Here we’ll talk about  
linear systems in general, because the intention is to give a more abstract 
formulation of the method, with no reference to real systems, from which we get 
the notion of “cause”, “effect” and “seat”. The word “seat” will indicate the place 
where some causes act to produce some effects, in general. In Table 2 and Table 
3 it is reported the glossary needed to understand the formulation. In many cases, 
the word or the definition used in the anonymous formulation is followed by the 
correspondent one used in the electrical formulation, both in terms of branch 
current and node voltage. In this manner it is possible to figure out the abstract 
formulation with the help of suitable entities taken from the more usual electrical 
topics. 
To get a more compact dissertation some other symbolic representations are 
given in Table 4, understand all figures in the following sections. 
 

Table 2: Fundamental glossary. 
 

 Seat Cause Effect Supplie
d seat 

Free 
seat 

Inhibited seat 

Anonymous j 
jY  

jX  0≠jY  0=jY  0=→= jj XkY  

Electrical 
(branch 
current) 

j 
 

branch 

jE  

voltage 
source 

jI  

branch 
current 

0≠jE  0=jE  0=→= jj IkE  

Electrical 
(node 

voltage) 

j 
 

node 

jI  

current 
source 

jV  

node 
voltage 

0≠jI  0=jI  0=→= jj VkI  

Comment j = 1, 2, 
.. n, 
where 
n is the 
total 
number 
of seats 

The 
cause 
in the 
seat j 

The 
effect 
in the 
seat j 

A seat is 
supplied 
when 
both 
cause 
and 
effect 
are 
present 
on it. 

A seat is 
free 
when 
the 
cause is 
not 
present 
but the 
corresp. 
effect is. 

A seat is inhibited 
when a quantity, 
dimensionally 
homogeneous 
with the causes, is 
present and set to 
a value so that it 
cancels the effect 
in the seat . 
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Table 3: Fundamental definitions. 

 
Name and 
symbol 

Anonymous Electrical 
(branch current) 

Electrical 
(node voltage) 

Regime 
 

)(LR  

State of the system 
individuated by the 
indication of the (given) 
causes, supplied seats, 
free seats and inhibited 
seats. 

State of the circuit individuated by the set 
of currents and voltages 

Multi-supplied 
regime 

Regime with more than 
one supplied seat. 
 

(State of the) circuit 
with more than one 
branch having a 
voltage source 

(State of the) 
circuit with more 
than one node 
having a current 
source 

Single-supplied 
regime 

Regime with only one 
supplied seat. 
 

(State of the) circuit 
with only one 
branch having a 
voltage source 

(State of the) 
circuit with only 
one node having a 
current source 

Unitary regime 
 

Single-supplied regime 
where the supplying 
cause has unitary value. 

(State of the) circuit 
with only one 
branch having a 
voltage source set to 
“one” 

(State of the) 
circuit with only 
one node having a 
current source set 
to “one” 

Principal regime 
of order v 
 

)(v
jR  

Unitary regime supplied in the j-th seat, whose free seats are all and 
only the seats with index greater than v. This means that the first v 
seats are all inhibited but one, which is unitary supplied. 

Inhibition 
quantity 
 

)(v
jlk  

Considering a principal 
regime of order v 
supplied in j, it is the 
quantity, in the seat l, 
dimensionally 
homogeneous with the 
causes set to a value so 
that it cancels the effect 
in the same seat (the 
effect is not present) (*). 

.. it is the voltage 
source in the branch 
l, set to the value so 
that the current is 
zero in the branch l. 

.. it is the current 
source in the node 
l, set to the value 
so that the node 
voltage is zero. 

Inhibition level 
of order v 

The set of all principal regimes of order v. 

Inhibition 
sequence 

The sorted set of all inhibition levels, sorted by decreasing values of 
the order v. 

 

(*) This definition is tautological with respect to the inhibited seat, but it is given anyway 
to underline that the inhibition quantity itself is an effect as well, even if it causes the 
principal effect cancellation. 
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Table 4: Useful representations utilized in the anonymous formulation. 
 

Generic 
quantity 
 

)(v
jQ  

It is the value assumed by the quantity Q in 
the regime of order v, supplied in the j-th 
seat. It follows the same notation of the 
regime, as shown in Table 3. 

Unitary regime 
 

 
1 1 

2 
)2(

12k  

3  

 
)2(

1R  

A regime is depicted by a table: the last row 
shows the regime name; the other 
(numbered) rows indicate the seats; 
inhibited seats have greyed background; 
free seats are empty and supplied seats have 
supply value reported. 
 

Non-unitary 
regime 
 

 

1 5 

2 5 )2(
12k  

3  

 5 )2(
1R  

If, for the previous regime, the supplying 
value is not set to 1, let’s say 5, and then it 
will be depicted by the table on the left, due 
to the linearity between causes and effects 
(it is a multiple of an unitary regime). 
 

 
 
 

 
 Level 3   Q   Seat   k 1 _   k 2 _   k 3 _   

1 
3 ( ) 

R   Q 
) 3 ( 

1   1     12 
3 ( ) 

k   13 
3 ( ) 

k   

2 
3 ( ) 

R   Q 
) 3 ( 

2   2   21 
3 ( ) 

k     23 
3 ( ) 

k   

3 
3 ( ) 

R   Q 
) 3 ( 

3   3   31 
3 ( ) 

k   32 
3 ( ) 

k     

Level 2     
      

1 
2 ( ) 

R   Q 
) 2 ( 

1   1     12 
2 ( ) 

k   

2 
2 ( ) 

R   Q 
) 2 ( 

2   2   21 
2 ( ) 

k     

Lev el 1     
    

1 
1 ( ) 

R   Q 
) 1 ( 

1   1     

   
Fig. 8: Sample inhibition sequence tableau with symbols. 
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1.4.1 Inhibition sequence tableau 
This tableau gives a complete view of all principal regimes of the same inhibition 
sequence and of all effect values in the respective regimes: 

• in the first column are indicated all principal regime names, grouped by 
decreasing inhibition order; 

• the column headed with “Seat” reports the supplied seat index for more 
readability; 

• the columns between regime names and seat index contain effect values; 
• the columns on the right of the seat index column contain inhibition 

quantities. 

In Fig. 8 it’s reported a tableau for a 3-seat system with only one effect quantity. 

1.4.2 ICS operator 
ICS stands for Inhibition-Compensation-Separation and indicates a particular 
kind of decomposition from a given unitary regime into other two, due to the 
superposition principle. 

Let the given unitary regime be ..jR , where “..” has to be understood as non 

specified inhibited seats. 
The first two steps of the ICS operator, applied to a generic free seat m are 

equivalent to add and subtract the correspondent inhibition quantity m
jmk .. in the 

same seat (Fig. 9). The third step consists in separating the two quantities in two 

different regimes (    Fig. 10). The inhibition quantity m
jmk ..  is left in the original 

regime (which now becomes m
jR.. ) and its opposite m

jmk ..− now acts as supplying 

quantity in the seat m of a second regime that, superimposed to the first, gives 
back the original one. 
 

     
 0   0 
j 1  j 1 
     

m 0  m 
m

jm
m

jm kk .... −  

 0   0 

 
..
jR  =  

..
jR  

 

        
 0   0   0 
j 1  j 1  j 0 
        

m 0  m   m 
m

jmk ..−  

 0   0   0 

 
..
jR  =  

m
jR..  +  

....
m

m
jm Rk ⋅−  

 

Fig. 9: Adding and subtracting 
the same inhibition 
quantity in the seat m. 

    Fig. 10: Separating the two compensating            
 regimes. 



 

II -10  

1.4.3 Inhibition theorem 

1.4.3.1 Proof 
It is derived from the relationship of     Fig. 10 applying the ICS operator again 
on the last regime. If we inhibit its seat j by adding the inhibition quantity 

j
mj

m
jm kk .... ⋅−  (remembering that this regime is a multiple of ..mR  through the 

factor m
jmk ..− ) and if we compensate it with j

mj
m

jm kk .... ⋅ , which will be then 

separated and made acting as supply cause in the next regime ......
j

j
mj

m
jm Rkk ⋅⋅ , we 

will get the symbolic equation: 
..............
j

j
mj

m
jm

j
m

m
jm

m
jj RkkRkRR ⋅⋅+⋅−= . 

The superposition principle allow to arrange this symbolic equation as any other 
equation, and thus: 

j
m

m
jm

m
jj

j
mj

m
jmj RkRRkkR .............. ⋅−=⋅⋅− , 

collecting the common factor: 
j

m
m

jm
m

jj
j

mj
m

jm RkRRkk ............ )1( ⋅−=⋅⋅− , 

and at the end: 

(Eq. 2) 
j

mj
m

jm

j
m

m
jm

m
jj kk

RkRR
....

........

1

1
)(

⋅−
⋅−=  

as reported in Fig. 11, with the obvious definition of ..
jmα . 

           
 0   0   0   0 

j 1  j 1  j 0  j 
j

mj
m

jm kk .... ⋅−  

           

m 0  m   m 
m

jmk ..−   m 0 

 0   0   0   0 

 
..
jR  =  

m
jR..  +   

....
m

m
jm Rk ⋅−  +   

......
j

j
mj

m
jm Rkk ⋅⋅−  

 
 

[ ]
kk

RkRR j

mj

m

jm

jmjm

j

m

m

jm

m

jj ....

............

1

1
,

⋅−
=⋅⋅= − αα      

 

Fig. 11: Proof of the Inhibition Theorem. 
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1.4.3.2 Goal 
If we consider that: 

• it has been proved that any unitary regime can be deduced from two regimes 
which have one more inhibited seat each; 

• regimes with higher order of inhibition are easier to study, because inhibition 
practically means suppression; 

• the theorem can be applied on the new two regimes, getting other more 
simple (inhibited) regimes, and so on, until they are no more simplifyable;  

then the goal is to move the study of the (real) given system to regimes of 
maximum inhibition and thus of maximum solution simplicity. 

1.4.4 Fundamental formula 
The proof is valid for any unitary regime, and thus for any principal regime of 
order v. The fundamental formula can be deduced directly substituting m by v in 
(Eq. 2). Starting from: 
 

with  m=v we get: j
v

j
v

jv
v

v
v

jv
v

R R k R( ) ( ) ( ) ( ) ( )− = − ⋅ ⋅1 αααα  

where: kk
v

vj

v

jv

v

jv )()(

)(

1

1

−
=α  

 

  
  
j 1 
  

m 0 
 0 

 
..
jR  which can be particularized for any quantity or inhibition quantity: 

(Eq. 3) [ ] )()()()()1( v
jv

v
v

v
jv

v
j

v
j QkQQ α⋅⋅−=− , 

(Eq. 4) [ ] )()()()()1( v
jv

v
vr

v
jv

v
jr

v
jr kkkk α⋅⋅−=− . 

1.4.5 Topological rule 
The previous expressions are not properly user friendly, but it is possible to give 
a topological formula of them, avoiding the annoying use of indexes. We need to 
add a new column to the tableau, called the auxiliary column, where to put the 

values of )(v
jvα , in correspondence with )(v

jR , as depicted in Fig. 12. 

These values have to be calculated through the product between the inhibition 

quantity )(v
jvk (adjacent cell to )(v

jvα , on the left) and the inhibition quantity 

)(v
vjk (symmetrically located to previous cell, with respect to the greyed diagonal 

of the tableau). 
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After a look to Fig. 13, where two examples (a, for inhibition quantities and a’, 
for generic quantities) are reported, it is easy to understand the topological rule: 

a A B C D= − ⋅ ⋅  

Every cell “a” can be calculated from the homologous cell “A” (same row and 
column in the immediately upper level) subtracting the product between the right 
end of row cell “B” and the lower end of column cell “C”, and multiplying this 
difference by the value of cell “D” adjacent to “B” in the auxiliary column. 
 

Fig. 12: Tableau with auxiliary column and symbol positions 
(topological formula). 

 
)2(

12k  a  )2(
1Q  a' 

)3(
12k  A  )3(

1Q  A' 
)3(

13k  B  )3(
13k  B 

)3(
32k  C  )3(

3Q  C' 
)3(

13α  D  )3(
13α  D 

 
a A B C D= − ⋅ ⋅         a A B C D' ' '= − ⋅ ⋅  

Fig. 13: Correspondence between symbols for the topological formula. 

 
Level 3 Q  Seat 1_k  2_k  3_k  α  

)3(
1R  A'  1  A B D 

  2     

)3(
3R  C' 3  C  ***  

Level 2      

)2(
1R  a' 1  a )2(

12α  

  2   ** 

Level 1     

  1  * 
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1.4.6 Solving mono-supply regimes 
The topological rule allows to deduce all effects in a given inhibition level when 
all principal regimes of the immediately upper level are known. The level of 
maximum inhibition has to be studied directly, of course, but its regimes are the 
most simple ones (elementary regimes). 
When all elementary regimes are known, then the iterative application of the 
topological formula leads to the final evaluation of the Level 1 quantities. This 
Level 1 corresponds to the regime, mono-supplied in seat 1. 
So, the basic algorithm is constituted by four steps: 

1. Choice, enumeration and orientation of seats. 
2. Direct solution of elementary regimes. 
3. Calculation of inhibition quantities. 
4. Calculation of effects. 

For completeness, some remarks are here reported:  

• the choice of the seats is normally arbitrary; 
• the enumeration of the seats is arbitrary, except for the supplied seat, which 

has to be indexed with “1”; 
• orientation of seats (if necessary) is normally arbitrary; 
• the inhibition quantities have to be calculated first, because they are needed 

for the effect calculation; 
• effects can be calculated separately, because the calculus is row independent. 

1.4.7 Solving multi-supply regimes 
It is possible to solve regimes with more than one supplied seat because they can 
be reduced to mono-supply regimes, due to the superposition principle, following 
a similar procedure (not reported here) based on the ICS operator as well. The 
final formula (given for the same three-loop circuit) is a very simple expression: 

(Eq. 5) RFRFRFYYYR )3(
33

)2(
22

)1(
11321 ),,( ⋅+⋅+⋅=  

where the following quantities 

YF 33 = , 

FkYF 3
)3(

3222 −= , 

2
)2(

213
)3(

3111 FkFkYF −−=
 

are called “auxiliary causes”. We notice that all needed quantities in this formula 
are present or can be directly derived from the tableau calculated for the 
mono-supply regime, with a minimal calculation overhead. 

1.4.8 Flexibility 
There some general feature of the method that make it very flexible. 
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1.4.8.1 Change of supply 
If the auxiliary causes are left symbolic, then we get expressions which are 
function of the supply values only. Once the full tableau is completed, then this 
fact allows to solve the originary system with the supply values configuration 
changed (not the seat displacement, of course), without redoing the entire tableau 
calculations: we simply need to recalculate the auxiliary causes by introducing 
the new supply values and then to use (Eq. 5) to get the requested effects 
corresponding to the new configuration. 

1.4.8.2 Inverse matrix calculation 
Once the full tableau is completed, inverse problem solving becomes immediate. 
An inverse problem is of the kind: “find the causes so that the given effects are 
produced” and it is depicted for a three-seat system, with the usual symbols, 
below: 

1 11 1 12 2 13 3X b Y b Y b Y= + +  

2 21 1 22 2 23 3X b Y b Y b Y= + +  

3 31 1 32 2 33 3X b Y b Y b Y= + +  

The coefficients ijb  constitute the inverse matrix of the originary system. The 

element displacement in this matrix can be interpreted as follows (see Fig. 14) 

• row (1): effects in regime )0,0,1(R ; 

• row (2): effects in regime )0,1,0(R ; 

• row (3): effects in regime )1,0,0(R . 

Thus, the inverse problem is reduced to the calculation of the last two regimes by 
a supply change (see previous section) each, because the first one corresponds to 

)1(
1R , already calculated at the end of the full tableau. 
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coefficients interpreted as: Calculation needed: 

11 1
1 2 31 0 0b X Y Y Y= = = =, ,

 

21 2
1 2 31 0 0b X Y Y Y= = = =, ,

 

31 3
1 2 31 0 0b X Y Y Y= = = =, ,

 

)0,0,1(R  

(no extra calculation) 

12 1
1 2 30 1 0b X Y Y Y= = = =, ,

 

22 2
1 2 30 1 0b X Y Y Y= = = =, ,

 

32 3
1 2 30 1 0b X Y Y Y= = = =, ,

 

)0,1,0(R  

(one supply change) 

13 1
1 2 30 0 1b X Y Y Y= = = =, ,

 

23 2
1 2 30 0 1b X Y Y Y= = = =, ,

 

33 3
1 2 30 0 1b X Y Y Y= = = =, ,

 

)1,0,0(R  

(one supply change) 

 
Fig. 14: Regime correspondence for inverse problem. 

1.5 Example 

Let us consider a 3-loop circuit with one dependent voltage generator of Fig. 15. 
The mutual induction between L1 and L2 is not considered (even if it is 
possible), and the parameter values are not given because we work in a 
completely symbolic way. 
If the tree is composed by the branches 4 and 5, then the elementary regimes are 
those summarized in Fig. 16. 
If we apply the procedure explained in the previous section we get the full 
inhibition sequence until the final solution row, which is here partially reported 
only for the quantity i1: 
 

( )
( ) ( ) 3

21
2

1121211

2
2

1

1

sLCLsCLRCLsCRLLR

sCLCsE
i

++++++
++=

αα
α  

 
 

 

Fig. 15: Sample circuit. 
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 i1 2i  i3 1_k  2_k  3_k  

)3(
1R  

11

1

RZZ CL ++ 0 0  − + ⋅( )Z iC α 1 α ⋅ i1 

)3(
2R  0 

1

2Z ZL C+ + α 0 − ⋅Z iC 2  − ⋅α i2

)3(
3R  0 0 

2

1

R
 0 0  

Fig. 16: Elementary regimes of the sample circuit 

1.6 Conclusions for Part One 

Symbolic programming can be used either for new methodologies or to renew old 
ones. In this paper an obsolete method from the point of view of numerical 
computing (called IME) has been reformulated symbolically in a complete 
abstract way, because its intrinsic nature of hierarchical problem decomposer 
helps to avoid some typical limitations of the symbolic analysis of electric 
circuits. 
As a matter of fact, among the Mathematica environment, it allows to solve quite 
wide networks, to deduce (semi-)symbolic relationship between circuit 
parameters (very useful in circuit diagnosis, for example), or to utilize inhibition 
tableau data to easily deduce other quantities (related to the circuit, of course) 
like sensitivities and inverse matrix. 
Furthermore, it is a flexible method because it is interdisciplinary and general in 
finding solutions. Also it allows to solve “inverse problems”, even if it is a 
non-inverting method. 
Part One showed the theoretical basis of the method and some features, while the 
software implementation is shown in Part Two of this chapter. 
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2 Part Two - Implementation 

This part is intended to show several software implementations of the general 
method exposed on Part One. They all are realised in a symbolic environment, 
based on the Mathematica program. Even though they can be used to approach 
any linear system, only electric circuits will be reported as test examples. The 
first implementation has a compact recursive algorithm, fast, but not suitable for 
wide circuits, because recursion needs a large amount of memory. The second is 
directly derived from a still compact but iterative (in closed form) algorithm, 
introducing a function for memory swapping onto mass storage media, to allow 
dealing with very wide circuits. The third one, not fully tested yet, is based on a 
matrix formulation: simple and elegant for a fast execution. For all these three 
implementations, the user has only to write down a PSPICE-like “net list” 
description (but even in symbolic, numeric or mixed way), because an 
initialisation function can translate it into the equations constituting the starting 
linear system. It is also possible to write down the system directly. From this 
point onwards, the procedure is completely transparent to the user which can 
collect, at the end, a symbolic expression (or semi-symbolic, if the starting 
system was too), ready for further calculations among the Mathematica 
environment. 

2.1 Kernel of the implementations 

The kernel of all proposed implementations is a procedure that takes an n-rank 
rectangular matrix as input and gives an (n-1)-rank rectangular matrix as output. 
They represent all data needed to describe the system regimes, respectively, of 
level n and n-1 (with n and n-1 seats inhibited): the less inhibited is calculated 
from the more inhibited as explained in Part One. In older implementations of 
this method there were several kind of matrices, each one devoted to different 
kind of quantities: effects, inhibition quantities, auxiliary quantities and so on. In 
these new implementations they are collected and compacted in a single matrix 
structure to reduce memory allocations and to take advantage of the built-in 
list/matrix oriented functions of Mathematica, which allow a faster execution 
with a single call on wide data structures rather than multiple calls on narrow data 
structures. There are several ancillary procedures as well, i.e. for translating data 
from/to the user or to perform the task in different ways, with the selected 
optimisation. All procedures are organised in a Mathematica package and they 
are called from higher level functions which are the shell of a multi-algorithmic 
tool for linear system (and linear electric circuit, of course) analysis. 

2.1.1 Input matrix 
As input matrix we refer not to the data delivered by the user, but to the matrix 
compiled by the symbolic processor starting from the problem description made 
by the user. Considering an electric circuit the description can be made either 
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through an input file in a PSPICE-like form or through an equation system 
directly written using whatever method you like. For example, in Fig. 17 a very 
simple circuit is shown, just to indicate two possible descriptions, reported in Fig. 
18: a “net list” description and an equation system in terms of loop currents and 
an extra equation due to the presence of the current source. 
 

 
Fig. 17: Sample circuit. 

 
V_E1,  1, 0    
V_E2,  2, 0    
I_Ig,  0, 3    
R_R1,  1, 3   
R_R2,  3, 2   
R_R3,  0, 3   

↔ 

{ 
 E1==R1*i1+R3*i3, 
 E2==R2*i2+R3*i3, 
 Vig==R3*i3, 
 i1+i2+Ig-i3==0 
} 
 

Fig. 18: “Net list” and equations of the sample circuit. 
 
In the net list symbols, the first character defines the component type and the 
characters following the underscore define the related symbolic name, utilized 
during the symbolic analysis. 
The package has two particular ancillary functions: the first one to translate the 
net list into a system of linear equations (following in this case only the Modified 
Nodal Analysis - MNA) and the second one (reported as example in Fig. 19) to 
translate the equation system into the input matrix. In this case the user can utilize 
any methodology to write equations. 
 
 IMEStartingTableauFromSystem[A_]:=Block[ 
  { 
   G, K, LenK, alfa 
  }, 
  G=DiagonalMatrix[1/DiagonalElements[A]]; 
  K=SetDiagonalElements[A/DiagonalElements[A],Null] ; 
  LenK=Length[K]; 
  alfa=Table[{1/(1-K[[i,LenK]]*K[[LenK,i]])},{i,Len K}]; 
  alfa[[LenK]]={Null}; 
  Return[AppendRows[G,K,alfa]]; 
  ]; 
 

Fig. 19: Input matrix translation function. 
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This matrix mat is a rectangular n x (n+n+1) matrix and has the following shape: 

















= quant.auxiliaryquant.inhibitioneffects 1nnnnnmat xxx
 

 
Acting in this manner, the input matrix can be considered a kind of interface 
between different circuit representation or even the circuit formalisation “made 
by hand” by the user. Due to the fact that IME works with every linear system in 
an absolutely abstract and symbolic way, it does no matter wherever the 
equations come from. 
 
 IMEShrink[mat_,gnum_]:=Block[ 
  { 
   v=Length[mat], 
   w=Length[mat[[1]]], 
   newmat, 
   newel, 
   endcol, 
   endrow 
  }, 
  endrow=v; 
  endcol=w-1; 
  newmat=Table[0,{i,endrow-1},{j,endcol}]; 

  newel[r_,c_]:=(mat[[r,c]]-
mat[[r,endcol]]*mat[[endrow,c]])*mat[[r,w]]; 

  Do[ 
   newmat[[i,gnum+j]] =newel[i,gnum+j]; 
   newmat[[j,gnum+i]]=newel[j,gnum+i]; 
   ,{i,2,v-1},{j,i-1}]; 
  If[gnum>0, 
   (* calc effects, if any *) 
   Do[ 
   newmat[[i,i]]=newel[i,i]; 
   Do[ 
    newmat[[i,j]]=newel[i,j]; 
    ,{j,endrow,gnum}]; 
   ,{i,endrow-1}]; 
   ]; 
  Do[ 

   newmat[[i,endcol]]=1/(1-newmat[[i,endcol-
1]]*newmat[[endrow-1,gnum+i]]); 

   ,{i,endrow-2}]; 
  Return[newmat]; 
 ]; 
 

Fig. 20: Kernel code of the recursive and iterative implementation. 

 

2.1.2 Recursive and iterative kernel 
The method can be activated in different ways, because there are different 
procedure for the same task depending on the optimisation needed. They all share 
the same data structure for maximum interoperability, but the recursive and the 



 

II -21  

iterative implementation share the same kernel as well, whose code is reported in 
Fig. 20. It is a C-like translation of the formula written in the introduction and 
applied to the proper elements of the input matrix mat. 
 
 
 IMEShrinkByMatrix[t_]:=Block[ 
  { 
  tempTableau 
  }, 
   
  tempTableau=( 
          TakeMatrix[t,{1,1},{-2,-3}]- 

            Dot[TakeMatrix[t,{1,-2},{-2,-2}],TakeMa trix[t,{-
1,1},{-1,-3}]])* 

        Flatten[TakeMatrix[t,{1,-1},{-2,-1}]]; 
  Return[ 
   Together[ 
    AppendRows[tempTableau, 
          Map[List, 
            1/(1-Flatten[TakeColumns[tempTableau,-1 ]]* 
                    First[TakeMatrix[ 

                        tempTableau,{-1,-
Length[tempTableau]},{-1,-1}]])]] 

   ] 
  ]; 
 ]; 

Fig. 21: Matrix kernel code. 

2.1.3 Matrix kernel 
The kernel of the matrix formulation works on a mathematical relationship 
between matrices and not between matrix elements like the previous kernel does. 
This approach yields in a very compact code, faster to be executed (in interpreted 
and not compiled symbolic environment) and takes advantage of the optimised 
matrix manipulation function of Mathematica. Matrix operands and operators in 
this kernel are given as follows. The logic and the topological formula both 
explained in Part One suggest to consider the input matrix structured as depicted 
in the first three rows of Fig. 22: the tableau of inhibition level n is subdivided in 

a rectangular matrix A , a row vector B and two column vectors C and D . It is 

easy to verify that the submatrix a , representing the tableau of inhibition level n-
1 (without auxiliary quantity column, in the last row of Fig. 22), can be 
calculated with this formula:  

[ ] DCBAa ∗⋅−=  

where ⋅ and ∗ are respectively the dot matrix product and the per scalar product 

between matrices. 
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Fig. 22: Matrix structures for the matrix kernel. 

 

The code to implement this kernel is in Fig. 21. We emphasise that the symbolic 
processor allows to work with a very simple algorithm, once the topological rule 
is given in terms of symbolic matrix formula. 

2.2 Implementations 

Although the three implementations do not constitute a stand-alone tool, they 
represent a complete package to handle linear (systems and) circuits. Properly, 
IME solves only the “core”, that is, it calculates all effects which are present in 
the input equation or which are indicated in the PSPICE-like batch file containing 
the net list description, and it does not implement functions for post-processing 
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the outputs because the Mathematica environment itself offers the ability to 
(symbolically or not) manipulate results for expression simplification, 
approximation, diagram and graphics creation. In addition, IME implements 
functions to manipulate input data like net list descriptions, traditional equations 
or matrix equations to give to the user the greatest reliability in thinking and 
programming solutions. It is also possible to link the IME processor to several 
packages for other purposes like sensitivity calculations [1] or fault detection 
(fault dictionaries [2], Cycling Verify method [3,4, Chapter III]) to extend the 
range of IME applications. These applications share the same disadvantages and 
advantages of all interpreted environment: not the fastest execution, no memory 
optimisation, but great flexibility and code maintenance for further expansions. 
The mentioned disadvantages are mitigated by the intrinsic characteristics of 
IME theoretical formulation and by the particular implementations proposed, but 
in comparison with other symbolic processors there are some other remarks [5,6]. 
Specific benchmarks for symbolic processors do not exist (yet), so a truly 
comparison is not possible [6], but it could be interesting to outline some features 
and results referring to a practical example, already used in [2], and reported in 
the next section. 
 
 

 

.. 
V_Vi, 1, 0 
C_C1, 1, 2 
R_R1, 1, 2 
R_R3, 2, 3 
C_C2, 0, 3 
R_R4, 3, 4 
C_C3, 0, 4 
.. 

 

Fig. 23: Sample circuit and its “net list” . 

 
 
 

{ 
 -(i2*R2) + i1*(R2 + R1/(1 + C1*R1*s))  == Vi, 
 -(i1*R2) + i2*(R2 + R3 + 1/(C2*s)) - i3/(C2*s) == 0, 
  i3*(R4 + 1/(C2*s) + 1/(C3*s)) - i2/(C2*s) == 0 
} 
 

Fig. 24: Equations written in terms of loop currents.  
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i
k

1
1
R2+ 1

R3
0 0 0 1 - 1I1R2+ 1

R3MR3 0 - 1
1
R2+ 1

R3

0 1
1
R3+ 1

R4+C2s
0 0 - 1

R3I1R3+ 1
R4+C2sM 1 - 1

R4I1R3+ 1
R4+C2sM0

0 0 1
1
R4+C3s

0 0 - 1
R4I1R4+C3sM 1 0

0 0 0 1+C1R1s
R1

1+C1R1s
R1

0 0 1

y
{ 

 
Fig. 25: Input matrix (with no auxiliary column) in terms of MNA. 

 i
k

1

R2+ R1
1+C1R1s

0 0 1 - R2

R2+ R1
1+C1R1s

0

0 1

R2+R3+ 1
C2s

0 - R2

R2+R3+ 1
C2s

1 - 1

C2IR2+R3+ 1
C2sMs

0 0 1

R4+ 1
C2s+ 1

C3s

0 - 1

C2IR4+ 1
C2s+ 1

C3sMs 1

y
{ 

 
Fig. 26: Input matrix (with no auxiliary column) in terms of loop currents. 

 

2.3 Circuit example 

Let us consider the circuit of Fig. 23. Its description can be given in a 
PSPICE-like manner or through directly written equations like in Fig. 24. In both 
cases, this description will be automatically translated into the input matrix by an 
ancillary function. The input matrix, in symbolic form, is reported in Fig. 25 and 
Fig. 26, starting respectively from the “net list” description and from loop current 
equations (without the auxiliary column for readability reasons). Now, IME and 
other calculations will be activated either by commands in a batch file or 
interactively by the user, which can work on them from the desktop. A great 
advantage of this package is that the user has not to worry about the input form 
and that he has (virtually) no constraints on managing the output. Examples of 
further elaboration on the circuit solution are reported in Fig. 27, Fig. 28 and Fig. 
29, with particular interest to circuit diagnostics. 
 

 

H(s,R1,R2,R3,R4,C1,C2,C3) = Vu/Vi = 
(R2 + C1*R1*R2*s)/(R1 + R2 + (C1*R1*R2 + C2*R1*R2 +  C3*R1*R2 + 
C2*R1*R3 + C3*R1*R3 + C2*R2*R3 + C3*R2*R3 + C3*R1*R 4 + 
C3*R2*R4)*s + (C1*C2*R1*R2*R3 + C1*C3*R1*R2*R3 + 
C1*C3*R1*R2*R4 + C2*C3*R1*R2*R4 + C2*C3*R1*R3*R4 + 
C2*C3*R2*R3*R4)*s^2 + C1*C2*C3*R1*R2*R3*R4*s^3) 

 

Fig. 27: Network function H=Vu/Vi with all symbolic parameters. 
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SensC2 = D[H,C2]*C2/H = 

-((C2*((R1*R2 + R1*R3 + R2*R3)*s + (C1*R1*R2*R3 + C 3*R1*R2*R4 
+ C3*R1*R3*R4 + C3*R2*R3*R4)*s^2 + C1*C3*R1*R2*R3*R 4*s^3))/ 
    (R1 + R2 + (C1*R1*R2 + C2*R1*R2 + C3*R1*R2 + C2 *R1*R3 + 
C3*R1*R3 + C2*R2*R3 + C3*R2*R3 + C3*R1*R4 + C3*R2*R 4)*s +  
      (C1*C2*R1*R2*R3 + C1*C3*R1*R2*R3 + C1*C3*R1*R 2*R4 + 
C2*C3*R1*R2*R4 + C2*C3*R1*R3*R4 + C2*C3*R2*R3*R4)*s ^2 + 
C1*C2*C3*R1*R2*R3*R4*s^3)) 

 

Fig. 28: Symbolic sensitivity of H to the parameter C2. 

 

 

 

 

Fig. 29: Fault dictionary in terms of real and imaginary part of H, related to R2 
and R3, varying from 0.1 to 10 times the rated value. 

2.4 Conclusions for Part Two 

Part Two pointed out some features related to the software implementation of a 
method for the symbolic analysis of linear electric circuit, explained in detail in 
Part One. The proposed implementation consists in a Mathematica package 
containing three different but interchangeable versions of the method plus a 
function library to help the user preparing input data. No post-processing 
function is given, because the Mathematica environment itself offers a great 
variety of functions to manipulate results in symbolic, numeric or graphical way. 
Thus the implementation covers only the software engine to efficiently solve 
wide linear circuits, due to the intrinsic nature of the method, based on a 
hierarchical decomposition of the starting problem into smaller and easier 
sub-problems and on a further recollection of them. 

2.5 References to Part Two 

[1] F. Filippetti, M. Martelli:. NETWORK SENSITIVITY ANALYSIS OF 
LARGE CIRCUITS IN SYMBOLIC FORM. European Conf. on Circuit 
Theory and Design ECCTD'95, Istanbul 1995. 

[2] F. Filippetti, M. Martelli: SYMBOLIC TECHNIQUES ADDRESSED TO 
THE FAULT DIAGNOSIS OF LARGE LINEAR ELECTRIC 



 

II -26  

CIRCUITS. IEEE Mediterranean Electrotechnical Conf. MELECON’96, 
Bari 1996. 

[3] M Artioli, F. Filippetti: LINEAR ANALOG CIRCUIT DIAGNOSIS 
BASED ON SYMBOLIC ANALYSIS AND REDUCED OBSERVABLE 
POINT SET. International Symposium on Theoretical Electrical 
Engineering ISTET’99, Magdeburg 1999. 

[4] M Artioli, F. Filippetti: SINGLE AND MULTIPLE FAULT DIAGNOSIS 
BASED ON SYMBOLIC ANALYSIS AND REDUCED SET OF 
OBSERVABLE POINTS FOR LINEAR ANALOG CIRCUITS. IEEE 
International Conference on Circuits and Systems ICECS2000, Beirut 
2000. 

[5] A. Liberatore, S. Manetti: SAPEC A PERSONAL COMPUTER 
PROGRAM FOR THE SYMBOLIC ANALYSIS OF ELECTRICAL 
CIRCUITS, IEEE ISCAS’88, Helsinki 1988. 

[6] F. V. Fernàndez, A Rodrìguez-Vàzquez: SYMBOLIC ANALYSIS 
TOOLS - THE STATE-OF-THE-ART. IEEE 1996. 

 



III -1 

Chapter III 

Reflection on circuit diagnostics 

Symbolic Calculus (SC) is nowadays becoming a real way to circuit analysis due 
to powerful symbolic processors and even commercial ones running on a normal 
PC [1,2,3]. They often use a large amount of memory, but there are algorithms to 
treat wide circuits too. Related to this,  several Authors showed that SC allows to 
define new diagnostic techniques or to improve existing ones [4,5,6,7,8,9], 
because the symbolic solution of a circuit is one of its general representation that 
can be particularized under several conditions as needed, taking into account i.e. 
measured values, parameters tolerances or that can be further processed to simply 
obtain other characterizations for each situation. In particular, the IME method 
[Chapter II], based on the superposition principle, yields the general symbolic 
solution of linear circuits by means of hierarchical sequences of more elementary 
analyses of smaller circuits (derived from the starting one, suppressing some 
elements and thus more simple), working with a unique four-term formula. This 
“circuit splitting” logic [Chapter I] is intended for relatively wide electric circuits 
and it is performed mathematically [3], e.g. from the admittance matrix, or 
physic-functionally [8,10]. 

1 Part One - Cycling Verify Method 

1.1 The basic idea 

Part One is intended to show the possibility to perform fault location and 
identification in case of single or double fault for linear analog circuits with a 
symbolic algorithm that allows to use few observable points. Under some 
hypothesis [11], the fault location is made through a first group of measures for 
the analysis and a second one for the validation. A group of test equations, 
obtained from the symbolic solution of the circuit, is cyclically solved in turn for 
each group of parameters under test, leaving the other ones at their rated value. A 
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validation equation, still obtained from the same symbolic solution, has the task 
to validate the faulty or non-faulty situation for those parameters. 

1.2 Single fault diagnosis - Problem definition 

1.2.1 Definition 
We consider the simple case of a single fault due to a variation from the rated 
value of a component; we exclude short or open circuits which correspond to 
circuit topology modifications. Assuming to have: 

• a symbolic solution of a linear circuit in terms of node voltage (if in terms 
of loop current it would be equivalent) which allows a first test point 
expressed as: 

),..,,( 21 mppptv
 

where ),..,,( 21 mppp  are the circuit parameters 

• a measured test voltage tv  at a fixed frequency  to detect the fault; 

• a symbolic expression still derived from the symbolic circuit solution and 
related to a validation point (on a second observable node) expressed as: 

),..,,( 21 mpppvv
 

• a measured validation voltage vv at the same fixed frequency. 

If we assume that the fault occurrence is possible only among the parameters to 
which the test voltage has sensitivity, we will verify the sensitivity of the test 
voltage to each parameter to exclude that ones that don't affect the test voltage 
over a definite threshold. If the affecting parameters are 

),..,,( 21 nppp , 

the excluded ones are 

),..,,( 21 mnn ppp ++  

and they will be taken at their rated value, thus the symbolic expressions are 
function of only: 

),..,,( 21 nppp . 

We emphasise the strategic importance to have a symbolic solution, because all 
sensitivities can be directly calculated through algebraic manipulations by the 
symbolic processor. 
 
Now, it is possible to define the following equations: 
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(Eq.1) tvppptv n =),..,,( 21  

(Eq.2) vvpppvv n =),..,,( 21  

They are respectively called test equation and validation equation. Of course, 
they are satisfied when the values of all parameters and the measured values are 
referring to the same situation being measured. 

1.2.2 Diagnosis 
If the rated value of the affecting parameters are 

),..,,( 21 nppp , 

and the actual values are 

),..,,( 21 nppp , 

then, according to the definitions of the previous subsection, it will be: 

tvppptv n =),..,,( 21 . 

If we assign the rated value to all but one parameters we can write an equation in 
one variable. Leaving the first parameter as the unique unknown we get an 
equation of the type: 

tvppxtv n =),..,,( 21 . 

Solving this equation with respect to 1x  we obtain the value of 1p  as if it were 

the parameter that actually affects the fault. Cycling this calculations through the 
n parameters at the end we get n vectors, which can be rearranged in the matrix 
of the possible single faults: 























n

n

n

n

xppp

pxpp

ppxp

pppx

..

..........

..

..

..

321

321

321

321

. 

Each of them is the solution of an equation and contains n-1 rated values and one 
hypothetical faulty value. If the circuit behaves as faulty and only one parameter 

can be out of its rated value (saying 1x ), only one of the previous n vectors will 

satisfy the validation equation: 
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vvxpppvv

vvpxppvv

vvppxpvv

vvpppxvv

n

n

n

n

≠

≠
≠
=

),..,,,(

..

),..,,,(

),..,,,(

),..,,,(

321

321

321

321

 

Thus, checking the validation equations, we get the information about the faulty 
parameter, because the i-th satisfied equation corresponds to the i-th component 
(parameter) of the row. 

1.2.3 Example 
Let's consider the very simple capacitive-resistive circuit of Fig.1, where the 
impedance values are reported in ohm. We have to work with complex numbers, 
but Mathematica function are able to transparently treat these kind of numbers, 
allowing the symbolic solution of complex equations of real unknown. Parameter 
values are meaningless, because they are intended just for doing simply 
demonstrative calculations.  

 
Fig.1: RC circuit example. 

 
Impedances are split in their two real parameters R and X; fixing the supply 
frequency to 1, and taken Vbd as test voltage  

),,,,,,( bdadacaccdbcabab RRXRRRXRtv , 

and Vbc as validation voltage  

),,,,,,( bdadacaccdbcabab RRXRRRXRvv , 

and solving symbolically the circuit we get from Mathematica the expressions for 
tv (reported below) and vv, in terms of complex numbers: 
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tv(Xab,Rbc,Rcd,Xac,Rad,Rbd)==(Rbd Vin (Rab+I Xab) ( Rad Rbc+(Rab+I 
Xab) (-Rcd-I Xcd)))/((-Rbc (Rab+I Xab)-Rbd (Rab+Rac +Rbc+I Xab)) 
(Rad Rbc+(Rab+I Xab) (-Rcd-I Xcd))-(-Rac (Rab+I Xab )-Rad 
(Rab+Rac+Rbc+I Xab)) (Rbc Rbd+(Rab+I Xab) (Rbc+Rbd+ Rcd+I Xcd))) 

If we simulate a fault by imposing that Cab has value 2 instead of 1, we get the 
(simulated) measured test and validation voltage: 

I  0.0631.7902+=tv , 

I  0.02351.7903+=vv . 

Cycling the test equation through the parameters list, we obtain the following 
equations in a single unknown, from an automated procedure: 

 

each giving, in turn, the hypothetical value for one parameter if it were faulty. For 
each situation we get a vector with the parameter values taken from the rows of 
the matrix of the possible single faults: 

 

They have to be validated by the equation, which corresponds to (Eq. 2), 

I  0.02351.7903(..) +=vv . 

The cyclical verification of the previous equation for each row of the matrix 
yields the validation vector 

 
{True ,True ,False,False,False,False,False,False} 

 

where the “True” at the first two places indicates that the first complex parameter 
(or equivalently the first two real ones) is the faulty component, as expected. 
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1.3 Double fault diagnosis - Problem definition 

1.3.1 Definition 
The problem definition is the same as the previous one. The only difference is 
that the fault is due to a variation from the rated value of two components; we 
still exclude short or open circuits which correspond to circuit topology 
modifications,  and do not consider parameters tolerances or sensitivities. 
Therefore we have the nearly the same assumptions as in the case of single fault: 
• a symbolic solution of a linear circuit in terms of node voltage (if in terms of 

loop current it would be equivalent) which allows the first two test points to 
be expressed as: 

),..,,(1 21 nppptv  

),..,,(2 21 nppptv  

where ),..,,( 21 nppp  are the circuit parameters  

• two measured test voltages 1tv  and 2tv at a fixed frequency  to detect the 
fault; 

• a symbolic expression still derived from the symbolic circuit solution and 
related to a validation point expressed as: 

),..,,( 21 npppvv  

on a third observable node; 

• a measured validation voltage vv at the same fixed frequency. 

1.3.2 Diagnosis 
Like in the previous case, if the rated value of the affecting parameters are 

),..,,( 21 nppp , and the real values are ),..,,( 21 nppp , then it will be: 

1),..,,(1 21 tvppptv n = , 

2),..,,(2 21 tvppptv n = . 

If we assign the rated value to all but two parameters we can write two equations 
in two variables. Leaving the (i.e.) first two parameters as the unique unknowns 
we get an equation system of the type: 

1),..,,,(1 321 tvppxxtv n =  

2),..,,,(2 321 tvppxxtv n =  

Solving this system with respect to 1x  and 2x  we obtain the value of 1p  and 

2p  as if they were the parameters that actually affect the fault. Cycling this 

calculation through all the possible couples of  parameters, at the end we get a 
collection of vectors, which can be rearranged in the matrix of the possible 
double faults: 
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Each of them is the solution (if it exists) of an equation system and contains n-2 
rated values and two hypothetical faulty values. If the circuit behaves as faulty 

and only two parameters can be out of their rated values (saying 1x  and 2x ), 

only one of the previous vectors will satisfy the validation equation: 

vvxxpppvv

vvpxxppvv

vvppxxpvv

vvpppxxvv

nn

n

n

n

≠

≠
≠
=

− ),,..,,,(

..
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),..,,,,(

1321

4321

4321

4321

 

Thus, checking the validation equations, we get the information about the faulty 
parameters, because the i-th satisfied equation corresponds to the i-th component 
couple. 

1.3.3 Example 
Let's consider the very simple resistive circuit of Fig. 30. Parameter values 
(reported in ohm in the figure) are still meaningless, because they are intended 
just for doing simply demonstrative calculations, like in the previous example. 
 

 
Fig. 30: Circuit example. 

* 

At this time we will take loop currents instead of voltages as test functions:  

I1 as ),,,,(1 54321 RRRRRti , 

I2 as ),,,,(2 54321 RRRRRti . 
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Taken the voltage on node 1 as validation function, 

V1 as ),,,,( 54321 RRRRRvv , 

and solving symbolically the circuit we get from Mathematica the equations for 
ti1, ti2 and vv; for example the corresponding equation for ti1 is: 
 
ti1(R1,R2,R3,R4,R5)==(10 (R2 R4 + R3 R4 + R2 R5 + R 3 R5 + R4 R5)) /  

(R1 R2 R4 + R1 R3 R4 + R2 R3 R4 + R1 R2 R5 + R1 R3 R5 + R2 R3 
R5 + R1 R4 R5 + R2 R4 R5) 

 

If we simulate a fault by imposing that R2 has value 6 instead of 2 and R5 has 
value 7 instead of 5 we get the (simulated) measured test currents and validation 
voltage: 

493

1270
1=ti ,    

493

660
2 =ti ,    

493

3660=vv . 

If we apply the single fault checking procedure, assuming for example ti1 as test 
point and vv as validation point, it fails; that is, no validation equation is satisfied 
for the single fault. Therefore it is possible to continue looking for the double 
fault. 
Cycling the test system through the parameter couples 
 
{{R1,R2},{R1,R3},{R1,R4},{R1,R5},{R2,R3},{R2,R4},{R 2,R5},{R3,R4},{R

3,R5},{R4,R5}}, 
 

we obtain equations like the following two ones, given for the possible couple 
{R3, R5}: 

 

For each situation we give a vector with the parameter values taken from the 
rows of the matrix of the possible double faults, partially reported: 

 
They have to be validated by the equation 

493

3660
(..) =vv  

The cyclical verification of the previous equation for each row of the matrix 
yields the validation vector: 
 
{False,False,False,False, False,False,False,True , ..} 
 

where the “True” at the seventh place indicates the seventh parameter couple, 
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that is R2 and R5 are the faulty components, as expected. 

1.4 Multiple fault 

It might be possible that this method could be extended to the more general case 
of multiple fault, because, if the double fault checking procedure fails, it should 
be possible in the same manner to continue looking for three faulty parameters, 
and so on. The main task wold be to build all the three (or k) components 
combinations and to solve the right three (or k) test equations with respect to 
those parameter variables in turn. The procedure calculation time grows with the 
multiplicity k of the checked fault, but it should still remains a fast procedure due 
to presence of the symbolic solution. It is possible that two or more rows satisfy 
the validation equation, that is the procedure can only individuate a group of 
possible faulty components. To solve this ambiguity we have to change the test 
and/or the validation point; if the solution is still ambiguous, changing the 
diagnostic technique could be needed [8,10,11] 

1.5 Interval algebra for real circuit tolerances 

In the previous sections we outlined the ground basis of this method to point out 
its formal structure. To handle real circuits we need to take into account 
tolerances [6,14]: this can be done without changing the formal structure of the 
method, due to its intrinsic symbolic formulation. Rated values and parameter 
values can be passed to the symbolic processor as range of values and the further 
calculations are performed in a transparent way by the “interval algebra” 
embedded in the symbolic processor. For example, a parameter value (R4) is 
expressed in Mathematica form as: 

 
R4=Interval[{3.8,4.2}] 

 

for a value of 4 with a ±5% tolerance. Test equations look like the following: 
 

(Interval[{19.99, 20.00}]*(R1*Interval[{2.99, 3.00} ] + 
Interval[{53.99, 54.10}])) / (R1*Interval[{122.90, 123.00}] + 

Interval[{477.98, 478.01}]) 
== 

Interval[{1.67, 1.89}], 
 

which is automatically generated by the test procedure and solved by the 
symbolic processor for: 

{R1 →Interval[{1.01807,1.95378}]} 
 

1.6 Conclusions for Part One 

Considering a symbolic solution of a circuit and the Interval Algebra embedded 
in the symbolic processor, the basic idea to have a group of test equations 
through which it is possible to check in turn all the correspondent parameter 
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groups, seems to yield a simple algorithm for fault location and identification. In 
our elementary examples the groups count one or two equations to detect 
respectively one or two parameters (single or double fault case), but it could be 
hopefully extended to a higher number of parameters. In this case a higher 
number of observable nodes is needed. In case of ambiguity it is possible to 
change the test and validation group. 
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2 Part Two – Multifrequency testing 

Part Two discusses some symbolic procedures for improving the fault diagnosis 
of linear analogue circuits. The procedure, based on IME, belongs to the SAT 
(simulation after test) diagnostic techniques, and concerns the parameter 
identification approach and the fault verification approach. An Example is 
presented by using a simple network to show in detail the feasibility of the 
procedure. 

2.1 Introduction 

The fault diagnosis in analogue circuits, in particular the fault detection and 
location, can be developed using several techniques [1], all involving the circuit 
simulation, both the simulation before test approach (SBT) and the simulation 
after test approach (SAT). 
In these techniques the circuit simulation plays a very important role but often 
needs of an excessive CPU time as the circuit must be simulated many times in 
correspondence of different fault situations. 
The symbolic solution of the circuit, that usually can be obtained only for small 
circuits, allows us to overcome these difficulties. 
Many symbolic techniques are developed to analyse linear circuits  [2-4]. IME 
easily allows us to get the symbolic responses also of large linear electric circuits 
[5,6,7, Chapter II and III]. Besides, if a circuit response to an assigned system of 
sources is known, IME allows us to get the response to any different system of 
sources simply working up a succession of expressions corresponding to the first 
circuit analysis; therefore a further circuit analysis is not needed. 
IME method features allow to easy realise diagnostic tasks utilising symbolic 
elaborations: in particular by combining the use of the substitution theorem [8] 
and of the multifrequency testing. 
But the question of resources amount (in terms of required hardware and 
software) still remains:, e.g.:a 100×100 matrix representing an electrical linear 
network is quite usual, but its completely symbolic inversion was unsuccessful on 
a 486DX computer, equipped with 8Mb RAM and a popular calculation package. 
The IME method [7,9], like other methods [2,3,4], seems to allow flexibility and 
reliability in reaching symbolic solutions. It is based on a simple calculation rule 
and allows to split the analysis problem into a sequence of hierarchical 
elementary circuit analyses, which can be solved separately reducing the 
computation complexity and consequently the requested amount of memory. 
These features avoid the well known problems arising in  case of symbolic 
analysis. 
The comparison with a classical inversion method (CME): the minors method, in 
term of memory employment (static, dynamic and total memory) is reported in 
the next table, for an n×n matrix. 
 



 

III -13  

 

Table 5:CME and IME Memory allocation. 

 CME IME 
 

Static 
 

n2  n n2 3

2

( )+
 

 
 

Dynamic n n n( )( )− −1 2 1

6  
 

 
0 

 
Total n n n( )( )+ +1 2 1

6  

n n2 3

2

( )+
 

 

Allocations n! 3n 

 
 
The comparison in terms of computing time is reported in Fig. 2. The 
performance in solving a circuit under several percentage of symbolic 
elements,(from a completely numerical circuit elements 0%, gradually to a 
completely symbolic ones 100%) is clearly depicted. It is clear that IME method 
becomes very suitable as the symbolic elements are increasing. 

2.2 Diagnostic procedure 

Starting from the IME method ability to provide any requested response of a 
circuit in complete symbolic form, improvements can be obtained in the 
diagnostic techniques. 
In particular  the IME method has been used to perform the network sensitivity 
analysis of large circuits in [7], and to improve the procedures based either on the 
fault dictionary, or  on the parameters identification by using the substitution 
theorem in [8]. 
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Fig. 31:Speed performance of IME and CME. 

About the last application we have to emphasise some drawbacks. In fact all the 
voltages (or all the currents in the case of mesh analysis) must be observable to 
detect a possible fault related to any circuit component, this is not the best way to 
face a diagnostic problem. 
On the contrary if we restrict the attention on the localisation of the fault, only 
few circuit values are needed. 
The symbolic linear equations that the IME method provides,  look like the 
following [8]: 
 
  V1 = F1 (I1, I2, I3, .......) 
(Eq. 1)  V2 = F2 (I1, I2, I3, .......) 
  V3 = F3 (I1, I2, I3, .......) 

  ........................... 



 

III -15  

 
 where the V are the measured voltages and the I are the current sources 
simulating the considered faults. If we find, from the solution of the linear system 
(Eq. 1),  that the current I2 is unequal to 0, this means that the fault is localised 

on the branches convergent to the node 2. Therefore in order to localise a faulted 
branch or some possible faulted branches (a faulted zone), we need to know only 
the voltages of the nodes in which current sources are inserted. 
After getting this result, to determine the exact faulted branch (or the exact 
faulted branches) and to evaluate the perturbed values of the faulted components, 
the multifrequency testing method can be used with reduced effort. In fact the 
multifrequency testing method, by using for example as test point the node 1, 
provide symbolic non linear equations that look like the following [8]: 
 
  V1(ω1) = M1 (p, ω1 ) 

(Eq. 2)  V1(ω2) = M2 (p, ω2 ) 

  V1(ω3) = M3 (p, ω3 ) 

  .......................... 
 
where p represents the parameters vector. Obviously the equation number, and 
consequently the number of test points or test frequencies [10] depends on the 
parameters vector order. As higher is the order of p as harder is the solution of 
the non-linear system (Eq. 2). 
If the faulted zone is known, it is possible to replace the parameters out of the 
faulted zone with the numerical nominal values, and to leave as unknowns the 
parameters into the faulted zone. In this way the solution of (Eq. 2) is certainly 
easier and quite immediate if only one parameter is unknown [10]. 
Therefore a good idea is to use IME method as depicted in [8] to localise the 
fault zone, and then to use again the IME features to provide the system (Eq. 2) 
in order to apply the multifrequency testing method in reduced form, as 
previously explained. The following application example shows this technique. 

2.3 Example 

As an example, the simple circuit already considered in [1,8] has been chosen 
(Fig. 32). Let’s suppose the faulted zone include only the node 2 and Vo be the 
observed variable. Recalling the previous considerations we have to consider as 
unknowns the parameters R3, R4, C2 and C3 pertaining to the node 2, and we 
have to assign the nominal values to the unfaulted components R1, C1, R2. 
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Fig. 32: Sample circuit.  

To perform the diagnosis by applying the multifrequency testing method the 
following steps are needed: 

1) A circuit analysis in the Laplace domain to provide the transfer function of the 
observed voltage Vo in symbolic form; 

2) Construction of the system (Eq 2). Due to the presence of four unknowns and 
one test point, we have to perform two measurements at two different frequencies 
Vo(ω1) and Vo(ω2). The corresponding equations 

 
    Vo(ω1) = M1 (p, ω1 ) 

(Eq. 3)  Vo(ω2) = M2 (p, ω2 ) 

 
can be split into the Real and Imaginary part, giving the four non-linear equations 
needed to evaluate the 4 unknowns. 
The nominal values of our test circuit are R1 = R4 = 1MΩ, R2 = 10MΩ, R3 = 
2MΩ, C1 = 0.01µF, C2 = C3 = 0.001µF. The chosen test frequencies are 10 and 
200 rad/sec. At these frequencies for +30-percent deviations in the circuit 
element R3 and C2, from the measurements we have obtained: 
 
  Vo(10)  = 0.902 - 0.073 I  
  Vo(200) = 0.318 - 0.430 I 
 
Therefore the system (Eq. 3) becomes: 
 
  +0.902 = Re[M1 (p, 10)] 
  -0.073 =  Im[M2 (p, 10)]   

  +0.318 = Re[M3 (p, 200)] 
  -0.430  = Im[M4 (p, 200)]   
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The equations automatically provided by IME are here reported in Mathematica 
format: 
 

 
 
The Laplace variable s has been replaced by I*ω and then ω by the corresponding 
test frequencies 10 and 200 rad/sec. About the parameter vector p the elements 
out of the faulted zone (R1 C1 R2) have been replaced by their nominal values, 
remaining as symbols the other elements. 



 

III -18  

2.4 Conclusions for Part Two 

A symbolic and semi-symbolic technique applied to the fault diagnosis of linear 
electric circuits has been discussed. This technique, based on the circuit analysis 
method IME, is pertinent to the parameter identification approach. 
The generation of suitable symbolic equations through IME is easy for wide 
circuits too, while solving them can be very hard in this case, due to the 
non-linearity of the expressions and the high number of unknowns. Thus, an 
application of this diagnostic technique based on the substitution theorem allows 
first to restrict the faulted zone, and then the multifrequency testing method can 
be applied with a reduced number of unknowns providing an efficient way to 
determine the perturbed values of the faulted components. 
A simple example is developed in detail, to show the features and the 
improvement obtained by utilising this technique 
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Chapter IV 

Reflection on circuit analysis 

Starting from the same basic idea, that is, particularizing a general symbolic 
expression imposing definite transformation rules, two circuit analysis procedure 
are proposed. The first one for switching circuits and the second one for 
piecewise-linear circuits. 

1 Part One - A procedure for switching circuits 

Part One is intended to show the feasibility of implementing symbolic techniques 
for the analysis and design of switching circuits. In particular, the symbolic 
approach, based on symbolic analysis in the Laplace transform domain, is applied 
to DC-DC switching converters. Several topologies, including resonant ones [1], 
are considered as examples showing the method implementation and its related 
features and advantages. 
To study switching circuits, one needs analysis methods even more efficient and 
flexible. Several time-domain analysis methods have been proposed, for example 
in [2-9], and recent versions of PSPICE allow switched networks with non-ideal 
switches to be treated, leading sometimes to non-accurate solutions and/or 
convergence problems. 
In general, the above methods are acceptable for some switched networks but 
they suffer of the most common problems of such an approach: 

• discontinuities at the switching instants and possible Dirac impulses are not 
considered; 

• difficulty of implementing circuit equations in computer programs; 
• restriction to only one topology change at each switching instant. 

More general drawbacks are: 
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• the switching times of internally controlled switches must be determined; 
• the correct topology after switching must be determined. 

The aim of this chapter is to propose a general analysis method free from the 
above mentioned limitations. 
The method is based on a symbolic processor which can determine any circuit 
response in a completely symbolic form, and also on the intrinsic behaviour of 
DC-DC converters. A large-signal time-domain analysis for this kind of circuits 
is based on these facts: 

• at any given time each switch is in ON or OFF state and the network contains 
only linear components arranged in a corresponding topology; 

• the equations for each topology are integrated until an event causes a state 
change for one or more switches; 

• eventually the topology is updated and the procedure is cyclically repeated till 
a specified time or the occurrence of specified conditions. 

The circuit behaviour is usually well known and there should not be any problem 
to individuate the topological configurations of all ON-OFF combinations of the 
switches. As it will be explained in the following subsections, this idea of 
“configuration” can be extended, using the proposed method, to the occurrence 
of internal events which determine a substantially different behaviour of the 
network, even if they do not determine a topology change. This new situation can 
have the same topology of the previous one, but with different parameter 
characteristics. In this sense, the proposed method can be addressed as an 
“event-driven method”. 

1.1 Symbolic technique 

After each commutation or, more generally, after each proper event, a 
configuration change occurs, so that the behaviour of the network can be seen as 
a sequence of circuit configurations. Each configuration can be handled as a 
linear circuit with initial conditions given by the final values assumed in the 
previous configuration [2,6,7]. Thus, it is possible a symbolic approach for this 
kind of converters by means of a suitable symbolic processor [10]. Through 
symbolic techniques, one can automatically get a mathematical description for 
each circuit configuration in the Laplace transform domain [11,12], and, once the 
symbolic processor has solved each configuration equations, the behaviour of the 
whole converter can be studied and designed through the method explained in the 
next subsection. 
In Fig. 33, the popular buck converter is shown. 
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Fig. 33: Ideal buck converter. 

 
In this circuit there are two switches: the external one S and the internal one D, 
and four configurations are possible. From the initial condition where S is ON 
and D OFF, when S is switched OFF the voltage polarity across L changes and D 
is switched ON in accordance to it. Definitely, only the two configurations of Fig. 
34 and Fig. 35 are involved in the circuit behaviour. We remember, of course, 
that all parameters in these schemes are ideal. For this circuit in the 
configuration, shown in Fig. 34, the symbolic processor gives the following 
symbolic expression for the inductor current in the s-domain: 
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where iL0 and vC0 are the inductor current and capacitor voltage just before S is 
turned ON. 
We emphasise that through the symbolic analysis it is easy to put in evidence the 
most relevant terms in an expression: in our example the forced response term 
and the natural response terms are separated. The same expression is still valid 
for the configuration of Fig. 35 as well. As a matter of fact, the two 
configurations are similar, except for the voltage source E, that can be easily set 
to zero by the symbolic processor. 

 
Fig. 34: Buck converter when the switch S is ON. 
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Fig. 35: Buck converter when the switch S is OFF. 

 

1.2 Proposed method 

The concept is to monitor the conditions for ON/OFF states of the switches and 
use the linear model accordingly, to provide segments of responses and build the 
circuit evolution. Model updating is performed automatically after each segment, 
whose length is pre-set. The proposed method is summarised in the basic scheme 
shown in Fig. 36. Starting from a known initial configuration, the circuit response 
is computed from symbolic solutions. At the switching instant, the actual values 
of the variables iL and vC become the initial values of the new situation. 
Switching can occur due to external commands or internal events, i.e., a 
switching element could switch as a consequence of a previous switching. Both 
cases can be managed by rules suitably formalised and related to the switching 
strategy: for example, a state change when a current is zero, if we are dealing 
with a kind of resonant converter. 
Because of the limited number of possible configurations and well known 
behaviour of DC-DC converter circuits, no general technique has been 
introduced to move from a configuration to another one. We referred, instead, to 
rules that link the different configurations for each circuit studied, but it is 
possible to implement general techniques [9-11] as well, that allow one to find 
the configuration following any previous one as a result of a switching event, 
without any “a priori” knowledge of the circuit evolution. 
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Fig. 36: Basic scheme of the proposed method. 

 
Since the circuit transition to a new configuration can be caused by switching or 
by an intrinsic event (like a voltage that becomes zero) a variable monitoring is 
performed to ascertain whether some rules are violated or not and then to process 
the next situation. With this approach the buck converter was examined and some 
of the results are depicted in Fig. 37 for the circuit with the following parameter 
values, already reported in [11]: E = 201 V, L = 3 mH, C = 4.2 µF, R =20 Ω, 
switching frequency fs = 40 kHz, duty cycle = 0.4. 
 

 
Fig. 37: Buck converter waveforms for inductor current and capacitor voltage. 
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1.3 Advantages 

The symbolic processor (in particular the IME processor [14,15, Chapter II]) 
allows us to generate and manipulate expressions. These capabilities produce 
several advantages: 

1. the method uses linear techniques only and therefore a solution is always 
reached; 

2. prediction of the next configuration by monitoring that suitable electrical 
signals verify particular conditions; this decisional step is performed by 
activating an inferential engine based on a set of production rules related to 
the circuit behaviour: this leads to a simple approach to the circuit; 

3. symbolic expressions allow one to easily study the influence of parameter 
variations, simulating the circuit only by substituting the new values; 

4. semi-symbolic expressions can be automatically generated, where only the 
most relevant parameters are left in symbolic form to get simple constitutive 
relationships; for example for design purposes, parasitic elements can be 
introduced to study their influence; 

5. nonlinearities can be introduced with PWL characteristics (in this case the 
“event” is the transition across two different linearity regions) or with 
parameters that gradually vary while the circuit switches towards another 
configuration. 

To highlight the features of the method, some cases are presented herein. In 
particular, Fig. 38 shows the waveforms of the inductor currents and capacitor 
voltage when the inductance is changed from 3 mH to 2 mH and to 1 mH: as the 
inductance decreases, the current ripple gets bigger and the voltage ripple across 
the capacitor increases accordingly. 
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Fig. 38: Buck converter waveforms when the inductance is set to the values 3 mH 

(a), 2 mH (b) and 1 mH (c). 

 
Then, we can consider the possibility  that L is a saturable inductor with the 
characteristic given in Fig. 39. Now, Fig. 40 shows inductor currents and 
capacitor voltages when the duty cycle is 0.2, 0.5 and 0.8, and when the 
capacitance is 500 nF highlighting the saturation effect. We notice that a duty 
cycle approaching unity produces an evident ripple in the inductor current which 
is reflected also on a higher ripple in the voltage across the capacitor. 
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Fig. 39: Saturable inductor characteristic. 
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Fig. 40: Buck converter waveforms when L is a saturable inductor and the duty 

cycle is 0.2 (a), 0.5 (b) and 0.8 (c). 

 
Let’s consider now the boost converter (Fig. 41), whose parameter values are E = 
5 V, L = 50 µH, C = 100 µF, R =15 Ω, fs = 50 kHz, duty cycle = 0.5, as used in 
[6]. Fig. 42 shows the waveforms of the inductor current and capacitor voltage in 
a particular case, that is for a step change of the input voltage E from 5 V to 6 V 
about 3 ms after start-up. 
We emphasise that this method allows circuit analysis either in completely ideal 
situations or with real components, and that all these points are helpful for the 
optimal circuit design according to the developed switching strategy. In fact, it is 
possible to simulate the circuit with totally ideal components at first. Then, 
introducing parasitic elements, non-linearities, etc., and using the same symbolic 
solution, one can model the circuit in a more real way. 

 
Fig. 41: Ideal boost converter. 
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Fig. 42: Boost converter waveforms for a step change of the input voltage. 

1.4 Resonant topologies 

The great flexibility of the proposed method allows more complex analyses to be 
performed in an efficient way. For example, we can suppose to add a resonant 
switch to the base buck converter. In Fig. 43 we report an L-type half-wave 
resonant DC-DC converter, where the capacitor between L2 and R has been 
removed for simplicity reasons. The chosen parameters are: E = 201 V, L1 = 2.5 
µH, L2 = 3 mH, C = 18 nF, R = 10 Ω, fs = 500 kHz, duty cycle = 0.4. The values 
for C, L1 and for the duty cycle are chosen so that the current through L1 is zero at 
the external switching instant, that is, the circuit works in resonant mode. For this 
circuit, the preliminary analysis shows that four topological configurations are of 
concern, but, for shortness, we report only the discharge phase configuration, 
when the load current is sustained by the capacitor C. In the Laplace transform 
domain this configuration is depicted in Fig. 44. 

 
Fig. 43: L-type half-wave resonant DC-DC converter. 
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Fig. 44: Discharge phase configuration in the Laplace transform domain. 

 
For this circuit the capacitor voltage in symbolic form is: 
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where vC0 and iL20 are the values of the current through L2 and the voltage across 
C at the end of the previous resonant phase. This response allows us to monitor 
when the capacitor C will be discharged to determine the switching time of the 
diode. During the decisional phase, the rule that activates this response segment 
is of the type: 

IF  Vc > 0  &  S_state = OFF   THEN  discharge phase. 

The related implementation problem will be discussed in the next subsection. 
Some results for the considered resonant converter are reported in Fig. 45, Fig. 
46 and Fig. 47. 

 

0 2 4 6 8 10 12 0 

0.5 

1 

C
ur

re
nt

 th
ro

ug
h 

R
 (

A
)  

0 2 4 6 8 10 12 -10 
0 

10 
20 

C
ur

re
nt

 th
ro

ug
h 

L1
 (

A
)  

0 2 4 6 8 10 12 0 

200 

400 

V
ol

ta
ge

 a
cr

os
s 

C
 (

V
)  

time (µs) 

V
ol

ta
ge

 a
cr

os
s 

C
 (

V
)  

 
Fig. 45: Beginning of the start-up phase for the resonant buck converter. 
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Fig. 46: Waveforms for the resonant buck converter, from power-on until steady 

state is reached. 
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Fig. 47: Steady state waveforms for the resonant buck converter. 

 
During the start-up phase (Fig. 45) it is noticeable that the zero instants of the 
current through inductor L1 are not equal spaced because the circuit has not 
reached the complete resonant condition yet. As Fig. 46 shows, after 800 µs the 
steady state in complete resonant condition is reached, as depicted in detail in 
Fig. 47, where periodic waveforms are reported. 
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1.5 The implementation of the proposed method 

The proposed method can be applied to any kind of switching circuit. We applied 
it to the resonant buck converter of Fig. 43, to test the reliability of the event 
driven approach, due to the relative “hardness” in treating resonant circuits. 
The procedure has been developed in a Mathematica™ environment, thus it was 
written in a C-like form. The program implementation follows the simple scheme 
reported in Fig. 36. After we have stored the symbolic solution in the system 
memory (in mass memory devices as well, if the circuit is really huge) and after 
the initialisation block, a loop begins. Inside the loop, until the simulation end 
time is reached, this job is done: 

• the time response is calculated by the inverse Laplace transform of the 
symbolic solution for the actual configuration; 

• this time response is scanned at the sample times to check whether a rule 
becomes satisfied. This is the decisional block: the next configuration is 
selected depending on the event occurrence and every event, the external 
ones as well, is checked through rules; 

• the new configuration and its initial conditions are set and the output is 
updated, reporting the valid time response segment between the 
configuration change instants. 

The procedure cannot be considered “a tool” yet, because, from the software 
point of view, it is not completely automated and integrated as PSPICE is, even if 
simulations times are comparable with those needed by PSPICE. In perspective, 
the method implementation will be made more flexible and capable of easy 
including any kind of rule. 

1.6 Conclusions for Part One 

In Part One, a flexible methodology has been proposed, trying to alleviate some 
troubles concerning power converter simulation, as well as convergence 
problems. The procedure has been tested on several DC-DC converter 
topologies, including resonant ones. The results seem to be satisfactory because 
the method always guarantees a solution with simulation times comparable to 
PSPICE simulations, and due to the fact that it is possible, using the same 
symbolic solution, to move  from an ideal circuit analysis gradually to a real 
circuit analysis. At the moment the procedure cannot be considered as a complete 
circuit simulation environment, but a contribution to develop tools for 
approaching a class of circuits, traditionally hard to treat, referring in particular 
to resonant circuits. 
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2 Part Two - A procedure for piece-wise linear 
circuits 

Part Two is intended to show an approach to directly translate linear methods to 
PWL circuit problems. The basic idea is to hide the non-linearity to the linear 
method, so that the user can handle the PWL problem as if it was a linear one. So 
doing writing equations for a PWL circuit can be extremely simple and fast, since 
the PWL formulation becomes a linear formulation. Moreover, since it is 
possible to use usual linear solvers, the solution is improved as well. This 
approach is based first on symbolic formulation and calculations, then on rules 
application, which deliver to the symbolic processor the task to deal with the 
PWL aspects of the problem. A Mathematica procedure dedicated to this aim will 
be suggested, together with a practical example where a four-diode rectifier is 
handled as a linear circuit. 

2.1 Introduction 

PWL techniques are often based on numerical computations or need to 
implement a kind of linear programming technique in order to reduce this amount 
of computations, even if the PWL circuit problem is, in some circumstances, 
ideally quite simple [1,2]. A symbolic approach to this problem could be 
interesting [3,4]. 
We assume to work with piecewise linearized characteristics, defined on the 
entire real axis and strictly monotone in each interval of the real axis obtained 
dividing it at each breakpoint of the linearized characteristic. Thus they are 
represented by continuous functions on the real axis, generally not derivable at 
the breakpoints but derivable and monotone between two consecutive 
breakpoints and between infinity and the nearest breakpoint. 
In each interval every characteristic is linear, therefore the solution for each 
region of the solution space can be found (if it exists) combining linear equations. 
Furthermore, excluding pathological cases, the symbolic solution of a linear 
system always exists, so the basic idea is to deliver a part of the computation 
workload to a procedure which can find a general symbolic solution using linear 
tools and then to particularize it numerically or semi-symbolically as needed. 
As a simple example we’ll consider an ideal rectifier with four identical diodes, 
described by a seven-segment line, but we remember that symbolic solutions for 
relatively wide circuits can be calculated via IME method [5,6,7, Chapter II]. 

2.2 Symbolic approach 

Mathematica is a commercial package whose built-in mathematical kernel is 
oriented to lists, rules applications and symbolic manipulations. This fact allows 
to directly handle problems in a more abstract way [5,6,7,8]. 
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Since PWL circuits are basically linear circuits when considered on a single 
region of their dominion, the idea is to transfer a linear solving method to PWL 
circuits, hiding to the method this particular kind of non-linearity.  
With this kind of symbolic “macro” solutions, calculated in a linear way, and 
with a symbolic processor capable of applying mathematical and logical rules to 
any kind of expression, is possible to take in account the non-linearity as well. 
That is, instead of finding all particular solutions (one per region) the suggested 
technique allows to determine a general symbolic solutions which can be easily 
and quickly particularized for each region.  

2.3 Symbolic technique 

To realize a procedure, using Mathematica features, the fundamental 
configuration steps are: 

1. choice of the shape of the characteristic of each PWL component, that is 
describing each region on the characteristic plane with a couple of 
numbers: threshold and slope; 

2. description of the complete set of characteristics by means of a list of 
Mathematica rules; 

3. writing symbolic equations system of the circuit as if all components 
were linear. Each PWL component is denoted by a variable name, which 
will never contain the actual value of the parameter for that component, 
but acts as a simple placeholder in solving the system. 

At this point the automatic Mathematica procedure starts and follows these steps: 

1. expansion of each placeholder in couple of unique symbols which 
represent threshold and slope in a generic region for that component; 

2. solution of the linear system, finding a unique general symbolic 
solution, if it exists; 

3. generation of the regions of the PWL solutions space, obtained by 
crossing the regions of the characteristics. This results in sets of 
inequalities in several variables; 

4. expressing these variables in terms of a single variable (i.e: current or 
voltage supply): this can be obtained by symbolical manipulation of the 
starting linear equations; 

5. solution of the inequalities system with respect to this single variable: 
the result is that all regions are expressed in terms of the source 
variable; 

6. elimination of all non-admissible regions and particularization of the 
general solution for every admissible region; 

7. merging the particularized solutions with interval functions in a 
all-in-one Mathematica expression which represents the general 
symbolic solutions of the circuit, disregarding validity regions (except 
for the starting hypothesis, of course). 
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2.4 A practical example 

Let’s consider the very simple resistive network of Fig. 48 (parameter values are 
not reported because we are only interested in pure symbolic calculations). 
 

 
 
v==-i2 R2+i4 R4 
v== i1 R1 –i3 R3 
v== i1 R1+(i1+i3)R+i4 R4 
i1+i3==i2+i4 
 

Fig. 48: Linear resistive circuit and related equations. 

 
The network can be solved, for example, using branch currents (numbered like 
the resistors), by the system of equations in Fig. 48. This system can be written 
directly, due to the fact that all components are linear. If non-linear components 
are present, other electrical considerations are needed before writing down the 
system. For example: let’s consider the four-diode rectifier shown in Fig. 49. 
It has the same topology of the previous network, but there are four non-linear 
components (that we will represent with PWL devices) which have several 
combinations of on-off states. These configurations should have to be analysed 
before getting a symbolic solution (one or more expressions) in a traditional way. 

 
Fig. 49: Sample PWL circuit. 

 
Through the proposed method it is possible to approach this PWL circuit as if it 
were a linear circuit. The non-linearity (PWL type, in our case) is collected and 
hidden in mathematical boxes, so that the circuits appears like in Fig. 50. 
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v==-i2 D2+i4 D4 
v== i1 D1 -i3 D3 
v== i1 D1+(i1+i3)R+i4 D4 
i1+i3==i2+i4 
 

Fig. 50: Circuit with hidden non-linearity and related pseudo-linear equations. 

 
At this point it is possible to write down linear equations like in Fig. 50, where 
D1, D2, D3 and D4 are considered generic linear resistors. These equations are 
formally identical to those of Fig. 48. 
The four diodes are of the same type and we will assume for them the same 
characteristic, which is represented by a list of points on the i-v plane. They are 
obtained from a PSPICE component characteristic, and they will be written in 
Mathematica as: 
 
breakpoints={{-12*10^-3,-5},{0,0},{10^-3,691*10^-3} ,{20.5*10^-
3,728*10^-3},{250*10^-3,867*10^-3},{1,961*10^-3}} 
 

These points are the breakpoints between segments which approximate the 
characteristic (step 1) shown in Fig. 51. The list of points is first automatically 
converted into a data structure for each diode, containing much more 
information, like: slope of the segments, name and variables of the characteristic. 
For diode 1, this will be:  
 
diodeline=PWLLine[breakpoints]; 
diodecharacteristic=PWLCharacteristic[D1,{i1,v1},di odeline]  
 

Then these data structures will be manipulated to generate a list of rules 
concerning slope and threshold in each region for every diode (still step 2). In the 
example below, mD1 and qD1 indicate slope and threshold for diode 1 in a 
couple of regions: 
 
{..{mD1 -> 0.125333, qD1 -> 0.835667, 0.25 <= i1},{ mD1 -> 1.89744, 
qD1 -> 0.689103, 0.001 <= i1 < 0.0205}..} 
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Fig. 51: Mathematica plot of the diode characteristic. 

 
At step 3 D1, D2, D3 and D4 would be linear components in a circuit under DC 
current and a linear system can be described. We emphasize again that the system 
could be obtained through whatever linear method and that it will be solved as 
linear, because the non-linearity is embedded in the rules structure and thus 
transparent to the linear solver. Referring to our circuit the system will be: 
  
LinearSys={ v==-i2 D2+i4 D4, 
   v== i1 D1 -i3 D3, 
   v== i1 D1+(i1+i3) R+i4 D4, 
   i1+i3==i2+i4} 
 

It stems that, if a library of non-linear components is available, and it is 
formalized in agreement with the conventions shown above, it is possible to 
analyse any circuit using that components, by simply writing linear equations, 
because the non-linearity is automatically handled by the Mathematica program. 
Then, the program itself expands each D symbol in two correlated symbols: mD 
(slope) and qD (threshold); then it solves this system with the normal built-in 
Mathematica Solve function to obtain a general and generic solution containing 
the same parameters mD and qD that are subject to the previous rules: 
 
{i1 -> -((2 + mD2 + qD1 + mD2*qD1 + qD2 + mD2*vi)/ 
      (mD1 + mD2 + mD1*mD2)),  
  i2 -> -((2 + mD1 + qD1 + qD2 + mD1*qD2 - mD1*vi)/  
      (mD1 + mD2 + mD1*mD2)),  
  i -> -((mD1 - mD2 - mD2*qD1 + mD1*qD2 - mD1*vi - mD2*vi)/ 
      (mD1 + mD2 + mD1*mD2)),  
  vu -> -((-mD1 + mD2 + mD2*qD1 - mD1*qD2 - mD1*mD2 *vi)/ 
      (mD1 + mD2 + mD1*mD2))} 
 

Through the symbolic manipulation of the inequalities that describe the regions 
for each diode, we obtain the admissible regions for the circuit as reported at step 
6,7,8 and as here (partially) shown: 
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admregions={ 
            -19                 -19 
  -2.13151 10   < v < 2.13151 10   ,  
                           -19 
  -1.38134 < v < 1.60437 10   ,  
             -16                    -17 
  -1.52564 10    <= v < -5.52705 10   ,  
. . . 
  v >= 1.98133} 
 

These admissible regions become part of that data structure which is used to 
indicate rules for variables. 
Applying these rules to the generic solution of the linear system we will obtain a 
single semi-symbolic solution particularized for our circuit. That is, a single 
expression that “knows when to switch” to a particular value depending on the 
region of the solution space (step 9,10). For example the current i1 is partially 
reported: 
 
i1-> 
        -6 
-4.60 10 (290598. -174080. v) If[v >= 1.98,1.,0]+ 
        -6 
-2.59 10 (-298.59 -669.99 v) If[-1.98 < v <= -1.47, 1.,0] -  
 . . . 
 

 
Fig. 52: Mathematica plot of the output voltage. 

 

 
Fig. 53: PSPICE plot of the output voltage. 
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This solution can be directly handled by Mathematica to plot the rectified voltage 
on the resistor (Fig. 52). The same plot obtained by a PSPICE simulation is 
shown in Fig. 53 for comparison. 

2.5 Conclusions for Part Two 

In Part Two we showed that the analysis of resistive PWL circuits is easy to 
implement and relatively fast to be executed, allowing a linear approach to 
piecewise linear circuits, because the non-linearity is hidden to the solver and, as 
a matter of fact, the equations are linear, avoiding convergence problem so 
common in many simulators. The non-linearity workload is transferred to the 
process of screening between admissible and non-admissible regions and to the 
particularization of a generic solution.  
Particularization of a solution is still not an heavy duty because, at symbolical 
level, Mathematica rules applications are similar to strings substitution. 
The final solution (but the particularized solutions too) are still in a symbolic 
form, of course, which is ready for further normal manipulations under 
Mathematica session like plotting, storing, and calculating. 
We proposed, not a complete environment for PWL circuit simulation, but a 
possible approach to this kind of problem. The procedure can be embedded in a 
more complex Mathematica program, provided with a reliable user interface to 
build a new tool to handle PWL circuits or it can be simply used as intermediate 
procedure between the user and an existing tool. 
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Chapter V 

Virtual instruments 

1 Introduction 

This chapter represents a kind of short briefing about some activities of the 
Author in a field of interest which is not directly based on the Symbolic Calculus, 
but which could be merged great with it. 
The intention was to investigate a feasible solution to integrate analysis and 
diagnosis symbolic algorithms in a diagnostic tool. A pre-existent version of a 
LabVIEW-based diagnostic system (at the Department of Electrical Engineering, 
University of Bologna) seemed to be a good starting point, due to its hierarchical 
open structure and due to the advanced interface functions of the LabVIEW 
environment. 
Here are presented new solutions implemented in this diagnostic system, realized 
as global instrument for on-line electromechanical system integrity assessment. 

2 Why a global intrument 

Electromechanical system condition monitoring meets increasing attention, since 
the costs for unexpected outages are growing with the rate of applied technology. 
It seems that a definite need exists for all motor failure prediction devices, 
matched to detect and predict different kinds of onsetting faults. These devices 
should meet the characteristics of a broad variety of machines and operate with 
nameplate data and non-invasive sensors [1]. 
Spectrum analysis of input currents can show different kind of electrical and 
mechanical failure [2,3,4]. Spectra are computed by ordinary Fast Fourier 
Transform algorithms, and failure spectrum lines are identified by means of 
C-programs implemented as suitable virtual LabVIEW instruments. The resulting 
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data can be stored in order to outline time-trends of system status and, if the 
existence of anomalous conditions is suspected, processed by diagnostic 
algorithms, both conventional and employing AI techniques. 
These methodologies have a general validity, but in the following sections we 
refer to induction motors, because specific techniques for this kind of power 
devices were already developed. 
An “optimum” maintenance scheduling leads obviously to additional cost of the 
instrumentation required, along with the additional operator time. In order to 
decrease the cost/benefit ratio, one strategy is to pursue a reduction of training 
and monitoring times of the diagnostic tool operator. The diagnostic equipment 
should, therefore, be designed to ease the interaction between man and 
instrumentation. The use of graphical interfaces between software and hardware 
allows a more intuitive approach to diagnostic operation. 
The main features of the system are: multi-diagnosis facility  on different systems 
simultaneously as well, automatic or man-driven diagnostic process and trend 
analysis. All the procedure is based upon the identification of anomalous 
spectrum lines in the input currents according to the CSA method (Current 
Signature Analysis). The results of FFT computation are then stored in a database 
and can be easily retrieved for visualization. Some instrument front panels are 
reported, in order to show the features of the diagnostic system. 

3 Basic scheme for a multi-diagnosis instrument 

The basic virtual instrument designed for machine diagnostics has the 
architecture schematised in Fig. 54. 
 
 

System

High  frequency F.F.T. Slip computation

"Failure Set"F.F.T.

Fault classification

Acquisition

Low  frequency
Acquisition

Fault severity
evaluation

 
 

Fig. 54: Sub-instrument global scheme. 

 
Two acquisitions of the instantaneous currents over different time intervals and 
with different sampling rates are performed. The former is devoted to slip 
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computation, while the latter provides the data that are stored for further 
diagnostic functions. 

3.1 A. Slip computation 

Two methods are selectable  to perform slip computation, starting from DFT 
analysis of the stator current signal: one based on slot spectral components [1] 
and one based on rotor electrical dissymmetry components [5]. There are, of 
course, two different virtual instruments devoted to the computation procedure. 
Their front panel (Fig. 55 and Fig. 56) are referred to a 1700kW three-phase 
machine with 3 pole pairs and 74 rotor slots. Both techniques give almost the 
same slip value: 0.0059. 
 

 

Fig. 55: Slip measurement by the slot harmonics technique (front panel). 

 

 

Fig. 56: Slip measurement by the fault frequencies technique (front panel). 
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3.2 B. Failure set 

The failure set formulation can be done in different ways, all reflecting the 
Minimum Configuration Artificial Intelligence (MCAI) [6]. 
The task is to filter spectral components, to eliminate those components that 
provide no useful failure information and to perform a components selection, 
searching the spectrum components which characterize the fault under test. The 
function is performed by a "C" program implemented in a virtual instrument and 
it ends building a vector of considered components, named “Failure Set” (FS) 
[7,8,9] for the motor currently under test. 
This diagnostic system is FC-FSM compliant (Fault Classification – Fault 
Specification Method) [6,10]. The diagnostic session, in fact, has two steps: first, 
classification of the fault and second, evaluation of the fault severity. 

3.3 C. Fault classification 

This identification process is done by an expert system inferential engine, 
implemented as a "C"-program in a suitable virtual instrument. The expert 
system, having at disposal the FS, databases containing machine operating 
conditions and machine history in term of trend of well stated failure 
components, is able to classify a fault occurrence [4,11]. 
Selectable procedures are: threshold analysis or neural network (NN) technique 
(if NN previously trained). These techniques are embedded in C-program under 
virtual instruments. 
According to the selected procedure the expert engine activates, for example, an 
unsupervised NN based classification method. 
If a FS containing current spectrum lines related to the machine situation is 
presented, the unsupervised NN clusters the FS into the characteristic region of 
the output node lattice, realizing a fault topographic map that can be also utilized 
immediately by visual inspection. As an example, Fig. 57 reports the fault map 
trained by rotor dissymetries (1), stator dissymetries (2) and bearing damages (3) 
together with healthy machine cases (H) [4,6,11] for  a three-phase 0.45 kW test 
motor. 
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Fig. 57: Fault map example to distinguish stator, rotor and bearing damages. 

 
If threshold analysis is selected, the expert engine starts this method to verify 
whether the diagnostic indicator for that FS is over the threshold. The attention 
threshold can be derived by analysing the diagnostic indicator trend. Fig. 58 
reports a typical example related to a 900kW machine under test for a long time. 
The trend of the diagnostic indicator (that is, the sum of the two fault components 
at the frequencies (1±2s)f in percentage with the fault component at the supply 
frequency [6,10] ). It shows that a bar get effectively broken at the 50th 
monitoring test of the figure. It is also easy to state that in this case can be 
assumed an attention threshold of 0.5%. 
If the FS is ambiguous, these methods can not decide on the fault classification. 
 

 
Fig. 58: Trend of the input current sideband sum  of a 900kW 6kV 8 pole 

induction machine. 
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3.4 D. Fault severity evaluation 

The last step is evaluating the fault severity. This evaluation is done starting from  
motor operating conditions, motor characteristics, trend, and threshold value for 
faults, by using conventional methods or AI techniques [10,14,15,16,17,18,19]. 
The selection of different specific methods is programmable in the diagnostic 
session editor. 
Each diagnostic session can involve three type of faults (on stators, rotors or 
bearings). Depending on the result of the classification step, the system assumes 
that a particular failure is probably occurred and invokes the specific diagnostic 
method for that kind of fault (or, if none occurred, states the correct operating 
condition to the operator). If the FS is ambiguous, instead, it asks for an operator 
action, which can decide on the fault severity by visual inspection of the data 
shown by various available front panels related to the justification features. 
This kernel is used by several virtual instruments integrated on a programmable 
diagnostic system, that is, the operator is allowed to define a diagnostic session 
through some configuration panels. As an example we show in Fig. 59 a panel 
related to a rotor faults diagnostic session. The machine under test is the usual 
three-phase 0.45 kW test motor with one pole pair in faulty condition (two 
broken bars). The front panel has (software) led indicator to highlight the 
diagnosis result and a label for the selected specific method. In the case reported 
below “fuzzy” is the indication of the used method. By clicking the “Details” 
key, an other front panel is activated, which explains more detailed information 
about the diagnosis result: each one of the possible situations, that are NO 
FAULT, INCIPIENT FAULT, ONE BROKEN BAR, TWO BROKEN BARS, 
TWO OR MORE BROKEN BARS, is characterized by a degree of membership, 
which is evidenced by bar indicators [1]. 
 

 

Fig. 59: Rotor fault diagnosis result front panel. 
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4 Multi-device monitoring features 

Limited to the acquiring board capabilities, it is also possible to use up to eight 
channels for data acquisition, specifying acquiring process and test device for 
each of them. 
The independence of the data channels allows to program the diagnostic session 
in two basic way: 

• the same diagnostic on up to eight different motors (if the diagnostic needs 
only a data stream, of course); 

• different diagnostics on a single motor (in the heaviest case six data streams 
are needed: three currents and three voltages), that is, the system reads all 
needed data and through the previously outlined process, it individuates the 
fault and activates the appropriate diagnostic. 

It is also possible: 
• to perform a manual diagnostic session; 
• or to automate it to minimize operator action: it is possible to repeat the 

programmed set of diagnostics (on several and different devices as well) a 
fixed number of times during a definite period, without man operations; 

• to record the diagnostic session data on a database (that can be visualised at 
any time) to add new information for further trend analysis. 

Several front panel get the operator able to define the various features of the 
diagnostic system. As an example we report in Fig. 60 and Fig. 61 the front 
panels for the channel function definition and for motor parameter definition. 

 

 

 
Fig. 60: Configuration panel for diagnostic session. 
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Fig. 61: Configuration panel for motor description. 

5 Conclusions 

In this chapter, a diagnostic tool for induction machine monitoring, realised by 
means of the software package LabVIEW, has been presented. The acquisition 
hardware is controlled by virtual instruments, VIs, that is, images displayed on a 
personal computer monitor, closely resembling real-world instruments. The front 
panels of the VIs are designed in order to provide trained operators with an 
immediate insight of machine conditions, while threshold-controlled alarm 
system are employed to alert un-expertised personnel. 
The tendency of the machine toward fault conditions can be pointed out by 
means of an other sub-panel of the VI, designed to display data recorded in a 
data-base. Operators are, therefore, enabled to track trends and plan maintenance 
operations to be performed ahead of machine failure. 
The proposed diagnostic system is programmable and devoted to the monitoring 
of different devices and it is realized as hierarchical and modular structure. For 
these reasons it seems very suitable to be completed with diagnostic modules 
based on Symbolic Calculus [Chapter III] to enhance its flexibility. 
Besides, graphic programming tools can greatly ease man/machine interaction in 
induction machine condition monitoring, allowing un-expertised personnel to 
perform routine checks of machine status. Hence, the cost/benefit ratio of the 
diagnostic procedure can be, on the whole, significantly reduced. 
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