
F-1

U N I V E R S I T À D E G L I S T U D I D I B O L O G N A
Faco l tà d i Ingegner ia E le t t r i ca

Corso di Dottorato di Ricerca in Ingegneria Elettrotecnica XIII ciclo

SY M B O L I C T E C H N I Q U E S

A D D R E S S E D T O E L E C T R I C C I R C U I T

A N A L Y S I S A N D D I A G N O S I S

Tesi di Dottorato di Marcello Artioli

AA 1999-2000

Il Coordinatore Il Relatore

Prof. F. Negrini Prof. F. Filippetti

F-2

Foreword

This work

1 Aim of the work

The aims of this work are basically:

1. to state the possible contribution of the Symbolic Calculus to two of the
problems of electrical engineering, that are:

• analysis of electric circuits;

• diagnosis of electric circuits;

2. to study a method and an implementation of the suggested contribution.

2 Structure of the work

Accordingly to the aim of the work, the matter exposition has been structured to
outline first a general frame about Symbolic Calculus and then to give more details
on particular contributions about the mentioned problems.

2.1 Chapter I

A definition of Symbolic Calculus is given, and the state-of-the-art of this
engineering approach is presented with its advantages and drawbacks, to identify
some fields of interest for the electrical engineering.

F-2

2.2 Chapter II

2.2.1 Part One
The new symbolic formulation of the known Inhibition Method can avoid or
reduce the typical limitations which the Symbolic Calculus suffers from, due to its
intrinsic nature. This method offers some other interesting features as well.

2.2.2 Part Two
The symbolic formulation of this method allows several software implementations
of a symbolic processor oriented to wide linear circuits. The general symbolic
formulation and the kernels of the implementations are presented to be a general
method that has reflections on circuit diagnosis and analysis.

2.3 Chapter III

2.3.1 Part One
The symbolic approach and an efficient symbolic processor, based on the
Inhibition Method, lead to an original contribution in linear electric circuit
diagnosis: the Cycling Verify Method. It is a symbolic technique to locate and
identify faults in linear circuits. The embedded interval algebra at the symbolic
formulation level allows to take into account parameter tolerances and
uncertainties, in a transparent way.

2.3.2 Part Two
Some other remarks are reported about the Inhibition Method and diagnostic
techniques, with particular reference to a proposed improvement to multifrequency
based techniques.

2.4 Chapter IV

The same symbolic approach and processor lead to contributions to circuit analysis
as well.

2.4.1 Part One
An improvement of the Threshold Technique, dealing with switching circuits,
introduces the event-driven principle and a calculation procedure starting from the
general symbolic solution. This fact avoids some known problems, like
convergence.

2.4.2 Part Two
An original contribution to resistive piecewise-linear circuit analysis consists in an
elegant symbolic approach to this kind of non-linearity. Once this non-linearity is

F-3

(in some way) “hidden” to the symbolic processor, the formulation and the solving
process become purely linear.

2.5 Chapter V

A software environment for virtual instruments has been investigated to study the
possibility to integrate diagnostic procedures and symbolic algorithms in a
user-friendly tool for electrical system analysis and diagnosis.

2.6 Conclusions and references

Conclusions are reported at the end of each chapter or at the end of each part of the
chapter, if it is subdivided in different main sections: each section has its own
conclusion paragraph.
References are organized in the same way. In each block, numbering restarts from
“1” to make easier reading.

I -1

Chapter I

Goals and views

1 Symbolic calculus

The key sentences that define the Symbolic Calculus (SC) are basically:

• literal calculus;
• operations on formal relationship (equations, inequations, rules, sets, etc.);
• integration of an advanced programming language.

It is clear that SC is, but it is not limited to, literal calculus. It works with abstract
quantities and their formal relationships to extend the capabilities of the Numeric
Calculus (NC). A numeric program normally takes specified numbers as input
and yields numbers as output again, referring to the prefixed unknown quantities.
Of course, this numeric output can further collected to produce graphs, for
example, or some other kind of report, to have information about quantity
courses or about correlations between quantities. But in any case it is a matter of
numeric estimation of relations and not of analytical relations. Therefore SC is
told to be more general: it can produce the same results, because analytical
expressions can be numerically evaluated to produce numbers, but it adds the
explicit information about quantity correlations.
Furthermore, SC integrates a programming language with advanced functions not
only to calculate or to solve problems, but to manipulate the resulting expressions
and formulas, like factorization, coefficient extraction, integration and many
other conceptual operation that the user normally does by the abstract and
mathematical thinking. In this manner, SC brings the problem formulation near to
the natural way of thinking of the user and thus it is a convenient and reliable
programming approach to get general solutions. As a matter of fact, a simulation
that needs to be repeated many times, can be easily programmed and performed
once and for all in symbolic way while the resulting symbolic solution can be
further repeatedly evaluated with different parameter values, with a minimal
workload.
So, it is possible to summarize the importance of SC [1] mainly in:

I -2

• problem formulation in a natural way of thinking;
• extraction of relationship between parameters;
• solution in general terms.

SC has also drawbacks, of course, and thus the state of the art comprises a variety
of proposals, depending on the aim and the optimization needed, as can be
understood in the next sections.

2 Goals

Analysis and diagnosis of electric circuits make often provision of repeated
simulations and calculations that are formally identical but which are performed
by different situations of rated values. A general symbolic solution, repeatedly
evaluated in numeric terms seems well to be complementary to existing analysis
and diagnosis techniques. Examples could be:

• fault dictionary generation: the same network function is measured and
plotted when one ore more parameters are varying in a given range;

• sensitivity calculations: basically, the same network function has to be
derived with respect to several parameters;

• research of parameter correlations: if an exact relation is needed, then it is
the right task for SC; if an approximated relation is needed, then a symbolic
expression could be either symbolically simplified or numerically evaluated
and then approximated.

Moreover, considering that modern environment for SC are capable of
sophisticated manipulations of literal expressions and rules, and that they can
connect to other software applications, the direct symbolic formulation of a
problem (in terms of abstract quantities, formal equations and inequations, rules,
etc.) seems to allow original procedures that are not possible if only numerical.
So the goals of this work are mainly set on three things:

• verify the benefit of SC in electric circuit analysis and diagnosis;
• use of SC to improve some existing technique;
• original contribution of SC to new techniques.

These aims have to be pursued taking into accounts the following drawbacks.

3 Problems

SC environments are complex software packages and their main common
problems [2] are:

• memory consumption;
• unmanageability of long expressions.

The internal data structures of symbolic expressions, in fact, are basically
character strings of variable length and various format. In a word: symbolic

I -3

processors work with unstructured data. The main drawback is not the increased
CPU time cost to deal with unstructured rather than structured data, but is the fact
that during the generation of a resulting symbolic expression these data
proliferate exponentially.
Checking Fig. 1, it is easy to understand that to perform a numerical evaluation of
a sum of n numbers we need memory space for n+1 number containers: the first
n for the given numbers and one that will contain, time after time, the sum of the
current addendum and the sum of the preceding numbers. This last container has
the same length and memory occupation of the other ones. On the other hand the
symbolic evaluation of a sum of n expressions still needs n+1 containers (which
are themselves memory wider than numbers, normally), but if no cancellation
occurs between the input expressions, the result container will carry an
expression which will be long at least as the sum of the lengths of the input
expression (without counting control and formatting data).

Fig. 1: Proliferation of symbolic data.

Thus, the main drawback of SC is memory consumption. This fact bounds
enormously the dimension of the problem (in our case, of the circuit) to be
solved.
Over this disadvantage, that relies on hardware resources, there is a second one
that relies on the user side. In fact, complete symbolic expressions for wide
circuits are very long, no matter where they come from, obtained by hand or from
the symbolic processor: a network function for a hundred-parameter circuit could
not fit on a page. Symbolic results are often unusable for a visual inspection by
the operator, due to their complexity and unreadability. This is a great penalty,
for example, during a design process, where the last tuning of a circuit is
frequently delegated to the user and not to an automatic procedure.

11623

5212

3301

6,2,3

=+=

=+=

=+=

pp

pp

p

21

2121

2

1

1

11

21

11
23

1
12

11
01

1
,,

1

CsC

RsCCCC

sC
pp

sC

RsC
Rpp

sCsC
p

sC
R

sC

+++=+=

+=+=

=+=

I -4

There are remedies, of course, to these drawbacks, but they are often
incompatible with other needs, as discussed in the next section.

4 Solutions

4.1 Decreasing the number of symbols

The first, obvious, remedy to both memory consumption and user-unreadability is
to reduce the number of symbols in the expressions, that is, only the most
interesting parameters are left literal, while the other ones are set to their
numerical values. In this way, the input expressions are more compact, the
program execution is faster, and the final result is not so complicated and more
readable. These things are paid, of course, by a loss of information and
generality about the solution.

4.2 Symbolic approximation of expressions

The symbolic approximation consists in generating simplified non-exact
expressions, maintaining all parameters literal. Relations between parameters are
simplified accordingly to particular neglecting criteria. This approach shares the
same advantages and disadvantages of all approximated methods, but it offers the
possibility to get a complete symbolic solution, easy to be read and manipulated
by the user, and more compact to be stored in memory. This feature is still paid
by a loss of information (which could be not so irrelevant) plus an increased
calculation time, due to the simplification procedures.

4.3 Functional/mathematical disaggregating of the circuit

A large electric network leads, during the solution generation, to very large and
complex symbolic expressions, which are difficult (when not impossible) to
calculate due to memory constraints.
If the network become decomposed in several smaller networks, then each
sub-network can be easily solved in turn by the symbolic processor, that could
rebuild the whole general solution from the partial ones, avoiding the
simultaneous generation of a great part of memory wasting expressions. The
decomposition can be done in terms of functional blocks or following abstract
mathematical rules.
The first case is very useful when the circuit input data are given as network
layout, that is when the circuit description is near its physical realization: it is
also possible to generate a library of symbolic expressions related to the most
common functional blocks, in order to re-use previous partial calculation to save
memory and CPU time. This is possible due to the generality of the symbolic
solution, no matter the parameter values are, which constitutes a kind of abstract
model of the block.

I -5

The second case operates directly on the circuit description in terms of equations.
This allows a great variety of transformations and manipulations to get reduced
equations, easier to solve. Of course, all partial solutions have to be anyhow
recollected to rebuild the general solution.
It is clear, that this approach lowers memory consumption but rises time
consumption, due to the decomposition-recollection process.

4.4 Spreading a single expression over a sub-sequence of
shorter expressions

During the generation of the solution expression, partial expression are not
colleted and algebraically compound in a new symbolic expression, but they are
labeled and organized (following specified criteria) in a kind of database; the new
expression is given as relationship between sub-expression, referred as
place-holder label. The resulting expression is very compact, and when the
sub-expressions are referring to well identified circuit blocks, it can be more
easily used in the design phase, for example.
This remedy is similar to the “circuit decomposition”, but it differs from it
basically in the fact that the final symbolic solution is not immediately and
explicitly calculated, while partial or intermediate calculations are saved on mass
storage media, and then retrieved when needed.

5 State-of-the-art

Nowadays there are some commercial and non-commercial symbolic processors
oriented to electric circuits and they are collected with their main features in
Table 1, taken from the work of Fernàndez and Rodrìguez-Vàzquez [2]. This
table highlights some relevant aspects about symbolic processors:

• only one is capable of hierarchical analysis by disaggregating circuits;
• very few have capabilities of managing general expressions (they are often

limited to s-domain calculations) or capabilities of further symbolic
computations (like pole extraction, sensitivity, etc.);

• almost all are stand-alone applications written in a low level language, not
a complete symbolic environment;

• they normally need high-level hardware resources (workstations).

I -6

Table 1: State-of-the-art for symbolic processors.

6 Synthesis prospect

Trying to overcome the typical limitations of SC, a symbolic processor should
hopefully have this features:

• ability for wide circuits, even if running on standard hardware (PCs);
• good compromise approximation-manageability of the symbolic solution;
• tools for extended expression manipulation (to perform other tasks than

solving).

Now, it’s clear that there is a definite need for a method that should allow SC for
wide circuits, but to date, there is not a method without drawbacks. The best
proposals are combinations of the previous discussed solutions, depending on the
optimization requested. If the generation of an exact symbolic solution, without
approximation, is “a must”, then the only way seems to be the renounce to the
visual inspection of the formulas. This disadvantage can be mitigated if the
method is well integrated in a complete symbolic environment, equipped with

I -7

advanced functions for the symbolic-algebraic manipulation, like integration,
derivation, transformation, plotting, etc.
Thus, a synthesis prospect on symbolic processors devoted to electric circuits
recalls the search about a method that has to be:

(1) intrinsically memory sparing
(2) and easily implementable in a symbolic programming environment.

In a strange manner, an old numeric method seems to be a good candidate, as
outlined in the next chapter.

7 References

[1] R. Germundsson. Viewpoint: THE IMPORTANCE OF SYMBOLIC
PROGRAMMING. IEEE Spectrum 1999.

[2] F. V. Fernàndez, A. Rodrìguez-Vàzquez: SYMBOLIC ANALYSIS
TOOLS - THE STATE-OF-THE-ART. IEEE 1996.

II -1

Chapter II

The old Inhibition Method as new symbolic
processor

1 Part One - Formulation

Part One is intended to show a general method that relies on the superposition
principle to analyse linear systems and electric circuits, based on hierarchical
sequences of more simple topologies with some inhibited elements and on a short
recollecting logic to calculate the final solution from the previous partial and
more elementary solutions.
In Section 1.1, 1.2 and 1.3, will be mentioned the origin of the method, why it is
general and some its global features.
In Section 1.4 will be exposed the non-disciplinary theory of the method. This
originally anonymous theoretical formulation can be particularised to other field
of interest specific formulations, and due to its intrinsic symbolic constitution this
method can be directly used to get symbolic solutions from the system which is
being applied to, or even be re-formulated in different algorithmic ways to
optimise some aspects like memory or time consumption, appearing to be a good
candidate for doing SC.
Implementations of this method will be discussed in Part Two.

1.1 Brief history and overview of the method

The Inhibition Method (IME) is an iterative exact non-inverting method to solve
any linear system, derived from the Cross method, which is, on the contrary, a
non-exact method and from which IME inherits the fundamental characteristic of
decomposing the problem into sub-problems easier to solve. It produces a
hierarchical sequence of sub-systems [1], at the end of which only elementary

II -2

systems can be found. Therefore, they can fast be solved with the minimum
knowledge, that is, few program code lines are needed.
The problem splitting process is founded, in fact, on the possibility (see Fig. 2) to
deduce the properties of the system (a) from two more simple sub-systems (b)
and (c), obtained from (a) suppressing or inhibiting a component.

(a)

(b)

(e)(d)

(c)

(g)(f)

S
pl

itt
in

g
lo

gi
c

R
ec

ol
le

ct
in

g
lo

gi
c

Elementary systems

Fig. 2: IME logic.

The same idea can work on the sub-systems (b) and (c), that can be deduced each
from an other couple, respectively (d-e) and (f-g), suppressing other components,
and so on. At the end of the splitting process we come to sub-systems so simple
that they can be solved immediately. For example a linear electric network can be
repeatedly split into more simple networks with an inhibited branch until they
become one-loop circuits. A similar ground basis is used in [2].
The recollecting logic, which will be demonstrated later in detail, is very simple
as well. As a matter of fact, if a variable (a) consists of the sum of other three
variables (b), (c) and (x),

xcba ++= ,

where (x) is proportional to (a) through a constant (k),

akx ⋅= ,
it follows that

(Eq. 1)
k

cb
a

−
+=

1
,

which is the symbolic formula that synthesises the link between a generic system
(a) and the two sub-systems (b) and (c) derived from it. The demonstration is not
difficult as well, because it is organised following the “Short Didactics” (SD)
criteria [3]: the unifying element of several steps of the proof is put in evidence

II -3

and collected to shorten and clarify the proof itself, realising a kind of “internal
contraction” [4].
The first IME version [5] was only for numeric calculations and it was based on a
laborious algorithm which had been working fine because it allowed to go round
the heavy memory constraints for huge systems to solve. Here it is presented a
new version of the method that really becomes a general method with the use of
modern software tools.

1.2 Weakness and strength

From the previous overview of the method, it comes out its intrinsic nature,
which carries advantages and disadvantages, of course.
Disadvantages are that:

• the basic algorithm is laborious;
• from the numeric computational point of view is slow.

These are the main reasons because this method is no more used today.
But, as explained in the previous chapter, it has advantages that could contribute
to limit common problems in SC, like:

• disaggregating the circuit, as can be seen in Fig. 2 and in the introductory
example of Section 1.3 below;

• disaggregating expressions, as can be understood considering that the very
simple formula of (Eq. 1) is repeated at every iteration instead of a single
complex expression;

• minimization of memory consumption, due to disaggregating-collecting
logic which works on few elements at a time.

Furthermore it has not to be underrated that it is a general method for several
reasons. As a matter of fact, it can be applied in every field if the system to solve
is linear (or made linear). The following anonymous formulation emphasizes this
fact, because there is no reference to the physical nature of the system, thus,
“anonymous” stands for inter-disciplinary and indicates a general method all over
the linear world.
From this formulation, discipline-specific methods can be derived simply by
carrying out the related rules, intrinsic to that particular discipline, as could be
seen in one of the next sections, where the electric formulation is given. Adding
to this some specific knowledge, like the modified nodal analysis, a complete
software tool can be realized for electric circuits.
Symbolic programming is a quite recent phase in the evolution of programming
but has now reached relevance and importance in engineering [6,7,8,9,10,11].
Other advantages of the suggested contribution relies, in fact, on the advanced
features of commercial symbolic processors, like Mathematica, which are able
to widely manipulate expressions, to draw any kind of graphics and to
automatically generate program source code.

II -4

Due to the presence of such symbolic processors, which allow to manage more
abstract quantities other than only numbers, the anonymous formulation can be
directly transferred to a computer program to make a general tool for linear
system solving and, last but not least, to solve it in a complete symbolic form,
giving a more general character to the solution found, leaving away the pure
numerical computation field.

1.3 An introductory example

The anonymous formulation is not too complicate, but it could be a little hard to
understand because it is really abstract. An introductory example should show the
method basics in a practical way. Let’s consider the very simple resistive circuit
Fig. 3. This is a 3-loop circuit: a possible tree could be that one depicted Fig. 3b
with numbered main loops.

A B

CD

� �

�
�

� �

(a): resistive circuit (b): tree, co-tree, loops (c): symbolic names

Fig. 3: Sample circuit.

IME performs a decomposition of the starting circuit into three elementary
(one-loop) circuits corresponding to the main loops, shown in Fig. 4, where each
loop is supplied with an unitary voltage source in the co-tree branch, regardless
of the originary supply value. These three elementary circuits are first solved
independently as reported (symbolically) in Fig. 5, and then the procedure
continues rebuilding the complete solution of the starting circuit, following a
recollecting logic. This logic uses “special” quantities to link and deduce the
general solution from the different elementary ones: inhibition quantities. In this
case, as depicted in Fig. 6 with slashed greyed symbols, inhibition quantities are
voltage sources. Their values have to be calculated to get just zero current in the
branch (seat) where they are placed, in order to render the starting circuit a
virtual one-loop circuit, that is, a three-loop circuit with two co-tree branches
inhibited (Fig. 4 and Fig. 6 compared). This is called inhibition level 3. The next
generation of circuits (inhibition level 2) basically consists of the same three-loop
circuit with only one co-tree branch inhibited, as shown in Fig. 7. The solution of
these circuits is deduced from level 3 via Inhibition Theorem (see previous
Section 1.1 or following Section 1.4.3). In the same way, level 1, which is the
final level, with no inhibited branches, can be deduced from level 2, giving the
final solution for the starting circuit of Fig. 3.

II -5

Fig. 4: Elementary one-loop circuits from the sample circuit.

Fig. 5: Simplified schemes for the elementary one-loop circuits.

1

3()

R R
)3(

2

R

)3(

3

[]

[]

[]
3

2
)(

3

1
3

1

)3(

11
)3(

23

)3(

11
)3(

12

)3(

11

−=⋅+−=

−=⋅−=

=

IRRk

IRk

I

bcab

ab

[]

[]

[]
3

2
)(

3

1
3

1

)3(

22
)3(

23

)3(

22
)3(

21

)3(

22

=⋅+=

−=⋅−=

=

IRRk

IRk

I

adab

ab

[]

[]

[]
2

1
)(

2

1
)(

4

1

)3(

33
)3(

32

)3(

33
)3(

31

)3(

33

=⋅+−=

−=⋅+−=

=

IRRk

IRRk

I

adab

bcab

Fig. 6: IME elementary regimes of the sample circuit (inhibition level 3).

Fig. 7: Hierarchical deduction of circuits “less inhibited” (inhibition level 2).

R
)2(

1

R

)2(

2

[])3(

1
)3(

32
)3(

13
)3(

12
)2(

12 α⋅⋅−= kkkk [])3(
2

)3(
31

)3(
13

)3(
21

)2(
21 α⋅⋅−= kkkk

II -6

1.4 Anonymous (symbolic) formulation

IME can be used in solving any physical linear system. Here we’ll talk about
linear systems in general, because the intention is to give a more abstract
formulation of the method, with no reference to real systems, from which we get
the notion of “cause”, “effect” and “seat”. The word “seat” will indicate the place
where some causes act to produce some effects, in general. In Table 2 and Table
3 it is reported the glossary needed to understand the formulation. In many cases,
the word or the definition used in the anonymous formulation is followed by the
correspondent one used in the electrical formulation, both in terms of branch
current and node voltage. In this manner it is possible to figure out the abstract
formulation with the help of suitable entities taken from the more usual electrical
topics.
To get a more compact dissertation some other symbolic representations are
given in Table 4, understand all figures in the following sections.

Table 2: Fundamental glossary.

 Seat Cause Effect Supplie
d seat

Free
seat

Inhibited seat

Anonymous j
jY

jX 0≠jY 0=jY 0=→= jj XkY

Electrical
(branch
current)

j

branch

jE

voltage
source

jI

branch
current

0≠jE 0=jE 0=→= jj IkE

Electrical
(node

voltage)

j

node

jI

current
source

jV

node
voltage

0≠jI 0=jI 0=→= jj VkI

Comment j = 1, 2,
.. n,
where
n is the
total
number
of seats

The
cause
in the
seat j

The
effect
in the
seat j

A seat is
supplied
when
both
cause
and
effect
are
present
on it.

A seat is
free
when
the
cause is
not
present
but the
corresp.
effect is.

A seat is inhibited
when a quantity,
dimensionally
homogeneous
with the causes, is
present and set to
a value so that it
cancels the effect
in the seat .

II -7

Table 3: Fundamental definitions.

Name and
symbol

Anonymous Electrical
(branch current)

Electrical
(node voltage)

Regime

)(LR

State of the system
individuated by the
indication of the (given)
causes, supplied seats,
free seats and inhibited
seats.

State of the circuit individuated by the set
of currents and voltages

Multi-supplied
regime

Regime with more than
one supplied seat.

(State of the) circuit
with more than one
branch having a
voltage source

(State of the)
circuit with more
than one node
having a current
source

Single-supplied
regime

Regime with only one
supplied seat.

(State of the) circuit
with only one
branch having a
voltage source

(State of the)
circuit with only
one node having a
current source

Unitary regime

Single-supplied regime
where the supplying
cause has unitary value.

(State of the) circuit
with only one
branch having a
voltage source set to
“one”

(State of the)
circuit with only
one node having a
current source set
to “one”

Principal regime
of order v

)(v
jR

Unitary regime supplied in the j-th seat, whose free seats are all and
only the seats with index greater than v. This means that the first v
seats are all inhibited but one, which is unitary supplied.

Inhibition
quantity

)(v
jlk

Considering a principal
regime of order v
supplied in j, it is the
quantity, in the seat l,
dimensionally
homogeneous with the
causes set to a value so
that it cancels the effect
in the same seat (the
effect is not present) (*).

.. it is the voltage
source in the branch
l, set to the value so
that the current is
zero in the branch l.

.. it is the current
source in the node
l, set to the value
so that the node
voltage is zero.

Inhibition level
of order v

The set of all principal regimes of order v.

Inhibition
sequence

The sorted set of all inhibition levels, sorted by decreasing values of
the order v.

(*) This definition is tautological with respect to the inhibited seat, but it is given anyway
to underline that the inhibition quantity itself is an effect as well, even if it causes the
principal effect cancellation.

II -8

Table 4: Useful representations utilized in the anonymous formulation.

Generic
quantity

)(v
jQ

It is the value assumed by the quantity Q in
the regime of order v, supplied in the j-th
seat. It follows the same notation of the
regime, as shown in Table 3.

Unitary regime

1 1

2
)2(

12k

3

)2(

1R

A regime is depicted by a table: the last row
shows the regime name; the other
(numbered) rows indicate the seats;
inhibited seats have greyed background;
free seats are empty and supplied seats have
supply value reported.

Non-unitary
regime

1 5

2 5)2(
12k

3

 5)2(
1R

If, for the previous regime, the supplying
value is not set to 1, let’s say 5, and then it
will be depicted by the table on the left, due
to the linearity between causes and effects
(it is a multiple of an unitary regime).

 Level 3 Q Seat k 1 _ k 2 _ k 3 _

1
3 ()

R Q
) 3 (

1 1 12
3 ()

k 13
3 ()

k

2
3 ()

R Q
) 3 (

2 2 21
3 ()

k 23
3 ()

k

3
3 ()

R Q
) 3 (

3 3 31
3 ()

k 32
3 ()

k

Level 2

1
2 ()

R Q
) 2 (

1 1 12
2 ()

k

2
2 ()

R Q
) 2 (

2 2 21
2 ()

k

Lev el 1

1
1 ()

R Q
) 1 (

1 1

Fig. 8: Sample inhibition sequence tableau with symbols.

II -9

1.4.1 Inhibition sequence tableau
This tableau gives a complete view of all principal regimes of the same inhibition
sequence and of all effect values in the respective regimes:

• in the first column are indicated all principal regime names, grouped by
decreasing inhibition order;

• the column headed with “Seat” reports the supplied seat index for more
readability;

• the columns between regime names and seat index contain effect values;
• the columns on the right of the seat index column contain inhibition

quantities.

In Fig. 8 it’s reported a tableau for a 3-seat system with only one effect quantity.

1.4.2 ICS operator
ICS stands for Inhibition-Compensation-Separation and indicates a particular
kind of decomposition from a given unitary regime into other two, due to the
superposition principle.

Let the given unitary regime be ..jR , where “..” has to be understood as non

specified inhibited seats.
The first two steps of the ICS operator, applied to a generic free seat m are

equivalent to add and subtract the correspondent inhibition quantity m
jmk .. in the

same seat (Fig. 9). The third step consists in separating the two quantities in two

different regimes (Fig. 10). The inhibition quantity m
jmk .. is left in the original

regime (which now becomes m
jR..) and its opposite m

jmk ..− now acts as supplying

quantity in the seat m of a second regime that, superimposed to the first, gives
back the original one.

 0 0
j 1 j 1

m 0 m
m

jm
m

jm kk −

 0 0

..
jR =

..
jR

 0 0 0
j 1 j 1 j 0

m 0 m m
m

jmk ..−

 0 0 0

..
jR =

m
jR.. +

....
m

m
jm Rk ⋅−

Fig. 9: Adding and subtracting
the same inhibition
quantity in the seat m.

 Fig. 10: Separating the two compensating
 regimes.

II -10

1.4.3 Inhibition theorem

1.4.3.1 Proof
It is derived from the relationship of Fig. 10 applying the ICS operator again
on the last regime. If we inhibit its seat j by adding the inhibition quantity

j
mj

m
jm kk ⋅− (remembering that this regime is a multiple of ..mR through the

factor m
jmk ..−) and if we compensate it with j

mj
m

jm kk ⋅ , which will be then

separated and made acting as supply cause in the next regime
j

j
mj

m
jm Rkk ⋅⋅ , we

will get the symbolic equation:
..............
j

j
mj

m
jm

j
m

m
jm

m
jj RkkRkRR ⋅⋅+⋅−= .

The superposition principle allow to arrange this symbolic equation as any other
equation, and thus:

j
m

m
jm

m
jj

j
mj

m
jmj RkRRkkR ⋅−=⋅⋅− ,

collecting the common factor:
j

m
m

jm
m

jj
j

mj
m

jm RkRRkk)1(⋅−=⋅⋅− ,

and at the end:

(Eq. 2)
j

mj
m

jm

j
m

m
jm

m
jj kk

RkRR
....

........

1

1
)(

⋅−
⋅−=

as reported in Fig. 11, with the obvious definition of ..
jmα .

 0 0 0 0

j 1 j 1 j 0 j
j

mj
m

jm kk ⋅−

m 0 m m
m

jmk ..− m 0

 0 0 0 0

..
jR =

m
jR.. +

....
m

m
jm Rk ⋅− +

......
j

j
mj

m
jm Rkk ⋅⋅−

[]
kk

RkRR j

mj

m

jm

jmjm

j

m

m

jm

m

jj

............

1

1
,

⋅−
=⋅⋅= − αα

Fig. 11: Proof of the Inhibition Theorem.

II -11

1.4.3.2 Goal
If we consider that:

• it has been proved that any unitary regime can be deduced from two regimes
which have one more inhibited seat each;

• regimes with higher order of inhibition are easier to study, because inhibition
practically means suppression;

• the theorem can be applied on the new two regimes, getting other more
simple (inhibited) regimes, and so on, until they are no more simplifyable;

then the goal is to move the study of the (real) given system to regimes of
maximum inhibition and thus of maximum solution simplicity.

1.4.4 Fundamental formula
The proof is valid for any unitary regime, and thus for any principal regime of
order v. The fundamental formula can be deduced directly substituting m by v in
(Eq. 2). Starting from:

with m=v we get: j
v

j
v

jv
v

v
v

jv
v

R R k R() () () () ()− = − ⋅ ⋅1 αααα

where: kk
v

vj

v

jv

v

jv)()(

)(

1

1

−
=α

j 1

m 0
 0

..
jR which can be particularized for any quantity or inhibition quantity:

(Eq. 3) [])()()()()1(v
jv

v
v

v
jv

v
j

v
j QkQQ α⋅⋅−=− ,

(Eq. 4) [])()()()()1(v
jv

v
vr

v
jv

v
jr

v
jr kkkk α⋅⋅−=− .

1.4.5 Topological rule
The previous expressions are not properly user friendly, but it is possible to give
a topological formula of them, avoiding the annoying use of indexes. We need to
add a new column to the tableau, called the auxiliary column, where to put the

values of)(v
jvα , in correspondence with)(v

jR , as depicted in Fig. 12.

These values have to be calculated through the product between the inhibition

quantity)(v
jvk (adjacent cell to)(v

jvα , on the left) and the inhibition quantity

)(v
vjk (symmetrically located to previous cell, with respect to the greyed diagonal

of the tableau).

II -12

After a look to Fig. 13, where two examples (a, for inhibition quantities and a’,
for generic quantities) are reported, it is easy to understand the topological rule:

a A B C D= − ⋅ ⋅

Every cell “a” can be calculated from the homologous cell “A” (same row and
column in the immediately upper level) subtracting the product between the right
end of row cell “B” and the lower end of column cell “C”, and multiplying this
difference by the value of cell “D” adjacent to “B” in the auxiliary column.

Fig. 12: Tableau with auxiliary column and symbol positions
(topological formula).

)2(

12k a)2(
1Q a'

)3(
12k A)3(

1Q A'
)3(

13k B)3(
13k B

)3(
32k C)3(

3Q C'
)3(

13α D)3(
13α D

a A B C D= − ⋅ ⋅ a A B C D' ' '= − ⋅ ⋅

Fig. 13: Correspondence between symbols for the topological formula.

Level 3 Q Seat 1_k 2_k 3_k α

)3(
1R A' 1 A B D

 2

)3(
3R C' 3 C ***

Level 2

)2(
1R a' 1 a)2(

12α

 2 **

Level 1

 1 *

II -13

1.4.6 Solving mono-supply regimes
The topological rule allows to deduce all effects in a given inhibition level when
all principal regimes of the immediately upper level are known. The level of
maximum inhibition has to be studied directly, of course, but its regimes are the
most simple ones (elementary regimes).
When all elementary regimes are known, then the iterative application of the
topological formula leads to the final evaluation of the Level 1 quantities. This
Level 1 corresponds to the regime, mono-supplied in seat 1.
So, the basic algorithm is constituted by four steps:

1. Choice, enumeration and orientation of seats.
2. Direct solution of elementary regimes.
3. Calculation of inhibition quantities.
4. Calculation of effects.

For completeness, some remarks are here reported:

• the choice of the seats is normally arbitrary;
• the enumeration of the seats is arbitrary, except for the supplied seat, which

has to be indexed with “1”;
• orientation of seats (if necessary) is normally arbitrary;
• the inhibition quantities have to be calculated first, because they are needed

for the effect calculation;
• effects can be calculated separately, because the calculus is row independent.

1.4.7 Solving multi-supply regimes
It is possible to solve regimes with more than one supplied seat because they can
be reduced to mono-supply regimes, due to the superposition principle, following
a similar procedure (not reported here) based on the ICS operator as well. The
final formula (given for the same three-loop circuit) is a very simple expression:

(Eq. 5) RFRFRFYYYR)3(
33

)2(
22

)1(
11321),,(⋅+⋅+⋅=

where the following quantities

YF 33 = ,

FkYF 3
)3(

3222 −= ,

2
)2(

213
)3(

3111 FkFkYF −−=

are called “auxiliary causes”. We notice that all needed quantities in this formula
are present or can be directly derived from the tableau calculated for the
mono-supply regime, with a minimal calculation overhead.

1.4.8 Flexibility
There some general feature of the method that make it very flexible.

II -14

1.4.8.1 Change of supply
If the auxiliary causes are left symbolic, then we get expressions which are
function of the supply values only. Once the full tableau is completed, then this
fact allows to solve the originary system with the supply values configuration
changed (not the seat displacement, of course), without redoing the entire tableau
calculations: we simply need to recalculate the auxiliary causes by introducing
the new supply values and then to use (Eq. 5) to get the requested effects
corresponding to the new configuration.

1.4.8.2 Inverse matrix calculation
Once the full tableau is completed, inverse problem solving becomes immediate.
An inverse problem is of the kind: “find the causes so that the given effects are
produced” and it is depicted for a three-seat system, with the usual symbols,
below:

1 11 1 12 2 13 3X b Y b Y b Y= + +

2 21 1 22 2 23 3X b Y b Y b Y= + +

3 31 1 32 2 33 3X b Y b Y b Y= + +

The coefficients ijb constitute the inverse matrix of the originary system. The

element displacement in this matrix can be interpreted as follows (see Fig. 14)

• row (1): effects in regime)0,0,1(R ;

• row (2): effects in regime)0,1,0(R ;

• row (3): effects in regime)1,0,0(R .

Thus, the inverse problem is reduced to the calculation of the last two regimes by
a supply change (see previous section) each, because the first one corresponds to

)1(
1R , already calculated at the end of the full tableau.

II -15

coefficients interpreted as: Calculation needed:

11 1
1 2 31 0 0b X Y Y Y= = = =, ,

21 2
1 2 31 0 0b X Y Y Y= = = =, ,

31 3
1 2 31 0 0b X Y Y Y= = = =, ,

)0,0,1(R

(no extra calculation)

12 1
1 2 30 1 0b X Y Y Y= = = =, ,

22 2
1 2 30 1 0b X Y Y Y= = = =, ,

32 3
1 2 30 1 0b X Y Y Y= = = =, ,

)0,1,0(R

(one supply change)

13 1
1 2 30 0 1b X Y Y Y= = = =, ,

23 2
1 2 30 0 1b X Y Y Y= = = =, ,

33 3
1 2 30 0 1b X Y Y Y= = = =, ,

)1,0,0(R

(one supply change)

Fig. 14: Regime correspondence for inverse problem.

1.5 Example

Let us consider a 3-loop circuit with one dependent voltage generator of Fig. 15.
The mutual induction between L1 and L2 is not considered (even if it is
possible), and the parameter values are not given because we work in a
completely symbolic way.
If the tree is composed by the branches 4 and 5, then the elementary regimes are
those summarized in Fig. 16.
If we apply the procedure explained in the previous section we get the full
inhibition sequence until the final solution row, which is here partially reported
only for the quantity i1:

()
() () 3

21
2

1121211

2
2

1

1

sLCLsCLRCLsCRLLR

sCLCsE
i

++++++
++=

αα
α

Fig. 15: Sample circuit.

II -16

 i1 2i i3 1_k 2_k 3_k

)3(
1R

11

1

RZZ CL ++ 0 0 − + ⋅()Z iC α 1 α ⋅ i1

)3(
2R 0

1

2Z ZL C+ + α 0 − ⋅Z iC 2 − ⋅α i2

)3(
3R 0 0

2

1

R
 0 0

Fig. 16: Elementary regimes of the sample circuit

1.6 Conclusions for Part One

Symbolic programming can be used either for new methodologies or to renew old
ones. In this paper an obsolete method from the point of view of numerical
computing (called IME) has been reformulated symbolically in a complete
abstract way, because its intrinsic nature of hierarchical problem decomposer
helps to avoid some typical limitations of the symbolic analysis of electric
circuits.
As a matter of fact, among the Mathematica environment, it allows to solve quite
wide networks, to deduce (semi-)symbolic relationship between circuit
parameters (very useful in circuit diagnosis, for example), or to utilize inhibition
tableau data to easily deduce other quantities (related to the circuit, of course)
like sensitivities and inverse matrix.
Furthermore, it is a flexible method because it is interdisciplinary and general in
finding solutions. Also it allows to solve “inverse problems”, even if it is a
non-inverting method.
Part One showed the theoretical basis of the method and some features, while the
software implementation is shown in Part Two of this chapter.

1.7 References to Part One

[1] X. Tan, C. J. R. Shi: HIERARCHICAL SYMBOLIC ANALYSIS OF
LARGE ANALOG CIRCUITS WITH DETERMINANT DECISION
DIAGRAMS. IEEE 1998.

[2] W. M. G. Van Bokhoven, D. M. W. Leenaerts: EXPLICIT FORMULAS
FOR THE SOLUTIONS OF PIECEWISE LINEAR NETWORKS. IEEE
Trans. on Circuits and System, vol.46, n.9, 1999.

[3] M. Artioli, F. Ciampolini, F. Filippetti: SHORT DIDACTICS (SD): A
FEASIBLE PROPOSAL TO SHORTEN LEARNING TIMES. Accepted
at EPE E = Te M2 Tomorrow's Education in Electrical
Technologies:revisited Methods & Tools for renewed Motivation, Liège
2001.

II -17

[4] M. Artioli, F. Ciampolini, F. Filippetti: INHIBITION METHOD: A
“SHORT DIDACTICS” EXAMPLE FOR AN ENGINEERING
APPROACH TO DIDACTICS. Accepted at EPE E = Te M

2 Tomorrow's
Education in Electrical Technologies:revisited Methods & Tools for
renewed Motivation, Liège, 2001.

[5] F. Ciampolini: A METHOD FOR LINEAR ELECTRIC CIRCUIT
ANALYSIS (in Italian), L’Elettrotecnica, n.10, 1968.

[6] R.Germundsson: VIEWPOINT: THE IMPORTANCE OF SYMBOLIC
PROGRAMMING. IEEE Spectrum 1999.

[7] F. Filippetti, M. Martelli: SYMBOLIC TECHNIQUES ADDRESSED TO
THE FAULT DIAGNOSIS OF LARGE LINEAR ELECTRIC
CIRCUITS. IEEE Mediterranean Electrotechnical Conf. MELECON’96,
Bari 1996.

[8] F. Filippetti, M. Martelli, M Artioli: IMPROVEMENTS TO THE
FAULT DIAGNOSIS OF LARGE LINEAR ELECTRIC CIRCUITS VIA
IME METHOD. Int. Symp. on Theoretical Electrical Engineering
ISTET’97, Palermo 1997.

[9] F. Filippetti, M. Martelli:. NETWORK SENSITIVITY ANALYSIS OF
LARGE CIRCUITS IN SYMBOLIC FORM. European Conf. on Circuit
Theory and Design ECCTD'95, Istanbul 1995.

[10] A. Liberatore, S. Manetti: SAPEC A PERSONAL COMPUTER
PROGRAM FOR THE SYMBOLIC ANALYSIS OF ELECTRICAL
CIRCUITS, IEEE ISCAS’88, Helsinki 1988.

[11] F. V. Fernàndez, A Rodrìguez-Vàzquez: SYMBOLIC ANALYSIS
TOOLS - THE STATE-OF-THE-ART. IEEE 1996.

II -18

2 Part Two - Implementation

This part is intended to show several software implementations of the general
method exposed on Part One. They all are realised in a symbolic environment,
based on the Mathematica program. Even though they can be used to approach
any linear system, only electric circuits will be reported as test examples. The
first implementation has a compact recursive algorithm, fast, but not suitable for
wide circuits, because recursion needs a large amount of memory. The second is
directly derived from a still compact but iterative (in closed form) algorithm,
introducing a function for memory swapping onto mass storage media, to allow
dealing with very wide circuits. The third one, not fully tested yet, is based on a
matrix formulation: simple and elegant for a fast execution. For all these three
implementations, the user has only to write down a PSPICE-like “net list”
description (but even in symbolic, numeric or mixed way), because an
initialisation function can translate it into the equations constituting the starting
linear system. It is also possible to write down the system directly. From this
point onwards, the procedure is completely transparent to the user which can
collect, at the end, a symbolic expression (or semi-symbolic, if the starting
system was too), ready for further calculations among the Mathematica
environment.

2.1 Kernel of the implementations

The kernel of all proposed implementations is a procedure that takes an n-rank
rectangular matrix as input and gives an (n-1)-rank rectangular matrix as output.
They represent all data needed to describe the system regimes, respectively, of
level n and n-1 (with n and n-1 seats inhibited): the less inhibited is calculated
from the more inhibited as explained in Part One. In older implementations of
this method there were several kind of matrices, each one devoted to different
kind of quantities: effects, inhibition quantities, auxiliary quantities and so on. In
these new implementations they are collected and compacted in a single matrix
structure to reduce memory allocations and to take advantage of the built-in
list/matrix oriented functions of Mathematica, which allow a faster execution
with a single call on wide data structures rather than multiple calls on narrow data
structures. There are several ancillary procedures as well, i.e. for translating data
from/to the user or to perform the task in different ways, with the selected
optimisation. All procedures are organised in a Mathematica package and they
are called from higher level functions which are the shell of a multi-algorithmic
tool for linear system (and linear electric circuit, of course) analysis.

2.1.1 Input matrix
As input matrix we refer not to the data delivered by the user, but to the matrix
compiled by the symbolic processor starting from the problem description made
by the user. Considering an electric circuit the description can be made either

II -19

through an input file in a PSPICE-like form or through an equation system
directly written using whatever method you like. For example, in Fig. 17 a very
simple circuit is shown, just to indicate two possible descriptions, reported in Fig.
18: a “net list” description and an equation system in terms of loop currents and
an extra equation due to the presence of the current source.

Fig. 17: Sample circuit.

V_E1, 1, 0
V_E2, 2, 0
I_Ig, 0, 3
R_R1, 1, 3
R_R2, 3, 2
R_R3, 0, 3

↔

{
 E1==R1*i1+R3*i3,
 E2==R2*i2+R3*i3,
 Vig==R3*i3,
 i1+i2+Ig-i3==0
}

Fig. 18: “Net list” and equations of the sample circuit.

In the net list symbols, the first character defines the component type and the
characters following the underscore define the related symbolic name, utilized
during the symbolic analysis.
The package has two particular ancillary functions: the first one to translate the
net list into a system of linear equations (following in this case only the Modified
Nodal Analysis - MNA) and the second one (reported as example in Fig. 19) to
translate the equation system into the input matrix. In this case the user can utilize
any methodology to write equations.

 IMEStartingTableauFromSystem[A_]:=Block[
 {
 G, K, LenK, alfa
 },
 G=DiagonalMatrix[1/DiagonalElements[A]];
 K=SetDiagonalElements[A/DiagonalElements[A],Null] ;
 LenK=Length[K];
 alfa=Table[{1/(1-K[[i,LenK]]*K[[LenK,i]])},{i,Len K}];
 alfa[[LenK]]={Null};
 Return[AppendRows[G,K,alfa]];
];

Fig. 19: Input matrix translation function.

II -20

This matrix mat is a rectangular n x (n+n+1) matrix and has the following shape:

















= quant.auxiliaryquant.inhibitioneffects 1nnnnnmat xxx

Acting in this manner, the input matrix can be considered a kind of interface
between different circuit representation or even the circuit formalisation “made
by hand” by the user. Due to the fact that IME works with every linear system in
an absolutely abstract and symbolic way, it does no matter wherever the
equations come from.

 IMEShrink[mat_,gnum_]:=Block[
 {
 v=Length[mat],
 w=Length[mat[[1]]],
 newmat,
 newel,
 endcol,
 endrow
 },
 endrow=v;
 endcol=w-1;
 newmat=Table[0,{i,endrow-1},{j,endcol}];

 newel[r_,c_]:=(mat[[r,c]]-
mat[[r,endcol]]*mat[[endrow,c]])*mat[[r,w]];

 Do[
 newmat[[i,gnum+j]] =newel[i,gnum+j];
 newmat[[j,gnum+i]]=newel[j,gnum+i];
 ,{i,2,v-1},{j,i-1}];
 If[gnum>0,
 (* calc effects, if any *)
 Do[
 newmat[[i,i]]=newel[i,i];
 Do[
 newmat[[i,j]]=newel[i,j];
 ,{j,endrow,gnum}];
 ,{i,endrow-1}];
];
 Do[

 newmat[[i,endcol]]=1/(1-newmat[[i,endcol-
1]]*newmat[[endrow-1,gnum+i]]);

 ,{i,endrow-2}];
 Return[newmat];
];

Fig. 20: Kernel code of the recursive and iterative implementation.

2.1.2 Recursive and iterative kernel
The method can be activated in different ways, because there are different
procedure for the same task depending on the optimisation needed. They all share
the same data structure for maximum interoperability, but the recursive and the

II -21

iterative implementation share the same kernel as well, whose code is reported in
Fig. 20. It is a C-like translation of the formula written in the introduction and
applied to the proper elements of the input matrix mat.

 IMEShrinkByMatrix[t_]:=Block[
 {
 tempTableau
 },

 tempTableau=(
 TakeMatrix[t,{1,1},{-2,-3}]-

 Dot[TakeMatrix[t,{1,-2},{-2,-2}],TakeMa trix[t,{-
1,1},{-1,-3}]])*

 Flatten[TakeMatrix[t,{1,-1},{-2,-1}]];
 Return[
 Together[
 AppendRows[tempTableau,
 Map[List,
 1/(1-Flatten[TakeColumns[tempTableau,-1]]*
 First[TakeMatrix[

 tempTableau,{-1,-
Length[tempTableau]},{-1,-1}]])]]

]
];
];

Fig. 21: Matrix kernel code.

2.1.3 Matrix kernel
The kernel of the matrix formulation works on a mathematical relationship
between matrices and not between matrix elements like the previous kernel does.
This approach yields in a very compact code, faster to be executed (in interpreted
and not compiled symbolic environment) and takes advantage of the optimised
matrix manipulation function of Mathematica. Matrix operands and operators in
this kernel are given as follows. The logic and the topological formula both
explained in Part One suggest to consider the input matrix structured as depicted
in the first three rows of Fig. 22: the tableau of inhibition level n is subdivided in

a rectangular matrix A , a row vector B and two column vectors C and D . It is

easy to verify that the submatrix a , representing the tableau of inhibition level n-
1 (without auxiliary quantity column, in the last row of Fig. 22), can be
calculated with this formula:

[] DCBAa ∗⋅−=

where ⋅ and ∗ are respectively the dot matrix product and the per scalar product

between matrices.

II -22

















quant.aux.quantitiesinhibitioneffects 1nnnnn xxx

























−

−−−−−−−

−

)()(
)1(

)(
1

)()(
1

)(
1

)(
)1(

)(
)1)(1(

)(
1)1(

)(
)1(

)(
1)1(

)(
1

)(
1

)(
)1(1

)(
11

)(
1

)(
11

....

....
::::::

....

n
nn

n
nn

n
n

n
nn

n
n

n
n

n
nn

n
nn

n
n

n
nn

n
n

nn
n

n
n

nn
n

n

kkkee

kkkee

kkkee

α

α





















B

DCA

[] DCBAa

kkee

kkee

n
nn

n
n

n
nn

n
n

n
n

nn
n

n

∗⋅−==
















−
−−

−
−

−
−

−
−

−
−

−−−

)1(
)1)(1(

)1(
1)1(

)1(
)1(

)1(
1)1(

)1(
)1(1

)1(
11

)1(
1

)1(
11

....

::::

....

Fig. 22: Matrix structures for the matrix kernel.

The code to implement this kernel is in Fig. 21. We emphasise that the symbolic
processor allows to work with a very simple algorithm, once the topological rule
is given in terms of symbolic matrix formula.

2.2 Implementations

Although the three implementations do not constitute a stand-alone tool, they
represent a complete package to handle linear (systems and) circuits. Properly,
IME solves only the “core”, that is, it calculates all effects which are present in
the input equation or which are indicated in the PSPICE-like batch file containing
the net list description, and it does not implement functions for post-processing

II -23

the outputs because the Mathematica environment itself offers the ability to
(symbolically or not) manipulate results for expression simplification,
approximation, diagram and graphics creation. In addition, IME implements
functions to manipulate input data like net list descriptions, traditional equations
or matrix equations to give to the user the greatest reliability in thinking and
programming solutions. It is also possible to link the IME processor to several
packages for other purposes like sensitivity calculations [1] or fault detection
(fault dictionaries [2], Cycling Verify method [3,4, Chapter III]) to extend the
range of IME applications. These applications share the same disadvantages and
advantages of all interpreted environment: not the fastest execution, no memory
optimisation, but great flexibility and code maintenance for further expansions.
The mentioned disadvantages are mitigated by the intrinsic characteristics of
IME theoretical formulation and by the particular implementations proposed, but
in comparison with other symbolic processors there are some other remarks [5,6].
Specific benchmarks for symbolic processors do not exist (yet), so a truly
comparison is not possible [6], but it could be interesting to outline some features
and results referring to a practical example, already used in [2], and reported in
the next section.

..
V_Vi, 1, 0
C_C1, 1, 2
R_R1, 1, 2
R_R3, 2, 3
C_C2, 0, 3
R_R4, 3, 4
C_C3, 0, 4
..

Fig. 23: Sample circuit and its “net list” .

{
 -(i2*R2) + i1*(R2 + R1/(1 + C1*R1*s)) == Vi,
 -(i1*R2) + i2*(R2 + R3 + 1/(C2*s)) - i3/(C2*s) == 0,
 i3*(R4 + 1/(C2*s) + 1/(C3*s)) - i2/(C2*s) == 0
}

Fig. 24: Equations written in terms of loop currents.

II -24

i
k

1
1
R2+ 1

R3
0 0 0 1 - 1I1R2+ 1

R3MR3 0 - 1
1
R2+ 1

R3

0 1
1
R3+ 1

R4+C2s
0 0 - 1

R3I1R3+ 1
R4+C2sM 1 - 1

R4I1R3+ 1
R4+C2sM0

0 0 1
1
R4+C3s

0 0 - 1
R4I1R4+C3sM 1 0

0 0 0 1+C1R1s
R1

1+C1R1s
R1

0 0 1

y
{

Fig. 25: Input matrix (with no auxiliary column) in terms of MNA.

 i
k

1

R2+ R1
1+C1R1s

0 0 1 - R2

R2+ R1
1+C1R1s

0

0 1

R2+R3+ 1
C2s

0 - R2

R2+R3+ 1
C2s

1 - 1

C2IR2+R3+ 1
C2sMs

0 0 1

R4+ 1
C2s+ 1

C3s

0 - 1

C2IR4+ 1
C2s+ 1

C3sMs 1

y
{

Fig. 26: Input matrix (with no auxiliary column) in terms of loop currents.

2.3 Circuit example

Let us consider the circuit of Fig. 23. Its description can be given in a
PSPICE-like manner or through directly written equations like in Fig. 24. In both
cases, this description will be automatically translated into the input matrix by an
ancillary function. The input matrix, in symbolic form, is reported in Fig. 25 and
Fig. 26, starting respectively from the “net list” description and from loop current
equations (without the auxiliary column for readability reasons). Now, IME and
other calculations will be activated either by commands in a batch file or
interactively by the user, which can work on them from the desktop. A great
advantage of this package is that the user has not to worry about the input form
and that he has (virtually) no constraints on managing the output. Examples of
further elaboration on the circuit solution are reported in Fig. 27, Fig. 28 and Fig.
29, with particular interest to circuit diagnostics.

H(s,R1,R2,R3,R4,C1,C2,C3) = Vu/Vi =
(R2 + C1*R1*R2*s)/(R1 + R2 + (C1*R1*R2 + C2*R1*R2 + C3*R1*R2 +
C2*R1*R3 + C3*R1*R3 + C2*R2*R3 + C3*R2*R3 + C3*R1*R 4 +
C3*R2*R4)*s + (C1*C2*R1*R2*R3 + C1*C3*R1*R2*R3 +
C1*C3*R1*R2*R4 + C2*C3*R1*R2*R4 + C2*C3*R1*R3*R4 +
C2*C3*R2*R3*R4)*s^2 + C1*C2*C3*R1*R2*R3*R4*s^3)

Fig. 27: Network function H=Vu/Vi with all symbolic parameters.

II -25

SensC2 = D[H,C2]*C2/H =

-((C2*((R1*R2 + R1*R3 + R2*R3)*s + (C1*R1*R2*R3 + C 3*R1*R2*R4
+ C3*R1*R3*R4 + C3*R2*R3*R4)*s^2 + C1*C3*R1*R2*R3*R 4*s^3))/
 (R1 + R2 + (C1*R1*R2 + C2*R1*R2 + C3*R1*R2 + C2 *R1*R3 +
C3*R1*R3 + C2*R2*R3 + C3*R2*R3 + C3*R1*R4 + C3*R2*R 4)*s +
 (C1*C2*R1*R2*R3 + C1*C3*R1*R2*R3 + C1*C3*R1*R 2*R4 +
C2*C3*R1*R2*R4 + C2*C3*R1*R3*R4 + C2*C3*R2*R3*R4)*s ^2 +
C1*C2*C3*R1*R2*R3*R4*s^3))

Fig. 28: Symbolic sensitivity of H to the parameter C2.

Fig. 29: Fault dictionary in terms of real and imaginary part of H, related to R2
and R3, varying from 0.1 to 10 times the rated value.

2.4 Conclusions for Part Two

Part Two pointed out some features related to the software implementation of a
method for the symbolic analysis of linear electric circuit, explained in detail in
Part One. The proposed implementation consists in a Mathematica package
containing three different but interchangeable versions of the method plus a
function library to help the user preparing input data. No post-processing
function is given, because the Mathematica environment itself offers a great
variety of functions to manipulate results in symbolic, numeric or graphical way.
Thus the implementation covers only the software engine to efficiently solve
wide linear circuits, due to the intrinsic nature of the method, based on a
hierarchical decomposition of the starting problem into smaller and easier
sub-problems and on a further recollection of them.

2.5 References to Part Two

[1] F. Filippetti, M. Martelli:. NETWORK SENSITIVITY ANALYSIS OF
LARGE CIRCUITS IN SYMBOLIC FORM. European Conf. on Circuit
Theory and Design ECCTD'95, Istanbul 1995.

[2] F. Filippetti, M. Martelli: SYMBOLIC TECHNIQUES ADDRESSED TO
THE FAULT DIAGNOSIS OF LARGE LINEAR ELECTRIC

II -26

CIRCUITS. IEEE Mediterranean Electrotechnical Conf. MELECON’96,
Bari 1996.

[3] M Artioli, F. Filippetti: LINEAR ANALOG CIRCUIT DIAGNOSIS
BASED ON SYMBOLIC ANALYSIS AND REDUCED OBSERVABLE
POINT SET. International Symposium on Theoretical Electrical
Engineering ISTET’99, Magdeburg 1999.

[4] M Artioli, F. Filippetti: SINGLE AND MULTIPLE FAULT DIAGNOSIS
BASED ON SYMBOLIC ANALYSIS AND REDUCED SET OF
OBSERVABLE POINTS FOR LINEAR ANALOG CIRCUITS. IEEE
International Conference on Circuits and Systems ICECS2000, Beirut
2000.

[5] A. Liberatore, S. Manetti: SAPEC A PERSONAL COMPUTER
PROGRAM FOR THE SYMBOLIC ANALYSIS OF ELECTRICAL
CIRCUITS, IEEE ISCAS’88, Helsinki 1988.

[6] F. V. Fernàndez, A Rodrìguez-Vàzquez: SYMBOLIC ANALYSIS
TOOLS - THE STATE-OF-THE-ART. IEEE 1996.

III -1

Chapter III

Reflection on circuit diagnostics

Symbolic Calculus (SC) is nowadays becoming a real way to circuit analysis due
to powerful symbolic processors and even commercial ones running on a normal
PC [1,2,3]. They often use a large amount of memory, but there are algorithms to
treat wide circuits too. Related to this, several Authors showed that SC allows to
define new diagnostic techniques or to improve existing ones [4,5,6,7,8,9],
because the symbolic solution of a circuit is one of its general representation that
can be particularized under several conditions as needed, taking into account i.e.
measured values, parameters tolerances or that can be further processed to simply
obtain other characterizations for each situation. In particular, the IME method
[Chapter II], based on the superposition principle, yields the general symbolic
solution of linear circuits by means of hierarchical sequences of more elementary
analyses of smaller circuits (derived from the starting one, suppressing some
elements and thus more simple), working with a unique four-term formula. This
“circuit splitting” logic [Chapter I] is intended for relatively wide electric circuits
and it is performed mathematically [3], e.g. from the admittance matrix, or
physic-functionally [8,10].

1 Part One - Cycling Verify Method

1.1 The basic idea

Part One is intended to show the possibility to perform fault location and
identification in case of single or double fault for linear analog circuits with a
symbolic algorithm that allows to use few observable points. Under some
hypothesis [11], the fault location is made through a first group of measures for
the analysis and a second one for the validation. A group of test equations,
obtained from the symbolic solution of the circuit, is cyclically solved in turn for
each group of parameters under test, leaving the other ones at their rated value. A

III -2

validation equation, still obtained from the same symbolic solution, has the task
to validate the faulty or non-faulty situation for those parameters.

1.2 Single fault diagnosis - Problem definition

1.2.1 Definition
We consider the simple case of a single fault due to a variation from the rated
value of a component; we exclude short or open circuits which correspond to
circuit topology modifications. Assuming to have:

• a symbolic solution of a linear circuit in terms of node voltage (if in terms
of loop current it would be equivalent) which allows a first test point
expressed as:

),..,,(21 mppptv

where),..,,(21 mppp are the circuit parameters

• a measured test voltage tv at a fixed frequency to detect the fault;

• a symbolic expression still derived from the symbolic circuit solution and
related to a validation point (on a second observable node) expressed as:

),..,,(21 mpppvv

• a measured validation voltage vv at the same fixed frequency.

If we assume that the fault occurrence is possible only among the parameters to
which the test voltage has sensitivity, we will verify the sensitivity of the test
voltage to each parameter to exclude that ones that don't affect the test voltage
over a definite threshold. If the affecting parameters are

),..,,(21 nppp ,

the excluded ones are

),..,,(21 mnn ppp ++

and they will be taken at their rated value, thus the symbolic expressions are
function of only:

),..,,(21 nppp .

We emphasise the strategic importance to have a symbolic solution, because all
sensitivities can be directly calculated through algebraic manipulations by the
symbolic processor.

Now, it is possible to define the following equations:

III -3

(Eq.1) tvppptv n =),..,,(21

(Eq.2) vvpppvv n =),..,,(21

They are respectively called test equation and validation equation. Of course,
they are satisfied when the values of all parameters and the measured values are
referring to the same situation being measured.

1.2.2 Diagnosis
If the rated value of the affecting parameters are

),..,,(21 nppp ,

and the actual values are

),..,,(21 nppp ,

then, according to the definitions of the previous subsection, it will be:

tvppptv n =),..,,(21 .

If we assign the rated value to all but one parameters we can write an equation in
one variable. Leaving the first parameter as the unique unknown we get an
equation of the type:

tvppxtv n =),..,,(21 .

Solving this equation with respect to 1x we obtain the value of 1p as if it were

the parameter that actually affects the fault. Cycling this calculations through the
n parameters at the end we get n vectors, which can be rearranged in the matrix
of the possible single faults:























n

n

n

n

xppp

pxpp

ppxp

pppx

..

..........

..

..

..

321

321

321

321

.

Each of them is the solution of an equation and contains n-1 rated values and one
hypothetical faulty value. If the circuit behaves as faulty and only one parameter

can be out of its rated value (saying 1x), only one of the previous n vectors will

satisfy the validation equation:

III -4

vvxpppvv

vvpxppvv

vvppxpvv

vvpppxvv

n

n

n

n

≠

≠
≠
=

),..,,,(

..

),..,,,(

),..,,,(

),..,,,(

321

321

321

321

Thus, checking the validation equations, we get the information about the faulty
parameter, because the i-th satisfied equation corresponds to the i-th component
(parameter) of the row.

1.2.3 Example
Let's consider the very simple capacitive-resistive circuit of Fig.1, where the
impedance values are reported in ohm. We have to work with complex numbers,
but Mathematica function are able to transparently treat these kind of numbers,
allowing the symbolic solution of complex equations of real unknown. Parameter
values are meaningless, because they are intended just for doing simply
demonstrative calculations.

Fig.1: RC circuit example.

Impedances are split in their two real parameters R and X; fixing the supply
frequency to 1, and taken Vbd as test voltage

),,,,,,(bdadacaccdbcabab RRXRRRXRtv ,

and Vbc as validation voltage

),,,,,,(bdadacaccdbcabab RRXRRRXRvv ,

and solving symbolically the circuit we get from Mathematica the expressions for
tv (reported below) and vv, in terms of complex numbers:

III -5

tv(Xab,Rbc,Rcd,Xac,Rad,Rbd)==(Rbd Vin (Rab+I Xab) (Rad Rbc+(Rab+I
Xab) (-Rcd-I Xcd)))/((-Rbc (Rab+I Xab)-Rbd (Rab+Rac +Rbc+I Xab))
(Rad Rbc+(Rab+I Xab) (-Rcd-I Xcd))-(-Rac (Rab+I Xab)-Rad
(Rab+Rac+Rbc+I Xab)) (Rbc Rbd+(Rab+I Xab) (Rbc+Rbd+ Rcd+I Xcd)))

If we simulate a fault by imposing that Cab has value 2 instead of 1, we get the
(simulated) measured test and validation voltage:

I 0.0631.7902+=tv ,

I 0.02351.7903+=vv .

Cycling the test equation through the parameters list, we obtain the following
equations in a single unknown, from an automated procedure:

each giving, in turn, the hypothetical value for one parameter if it were faulty. For
each situation we get a vector with the parameter values taken from the rows of
the matrix of the possible single faults:

They have to be validated by the equation, which corresponds to (Eq. 2),

I 0.02351.7903(..) +=vv .

The cyclical verification of the previous equation for each row of the matrix
yields the validation vector

{True ,True ,False,False,False,False,False,False}

where the “True” at the first two places indicates that the first complex parameter
(or equivalently the first two real ones) is the faulty component, as expected.

III -6

1.3 Double fault diagnosis - Problem definition

1.3.1 Definition
The problem definition is the same as the previous one. The only difference is
that the fault is due to a variation from the rated value of two components; we
still exclude short or open circuits which correspond to circuit topology
modifications, and do not consider parameters tolerances or sensitivities.
Therefore we have the nearly the same assumptions as in the case of single fault:
• a symbolic solution of a linear circuit in terms of node voltage (if in terms of

loop current it would be equivalent) which allows the first two test points to
be expressed as:

),..,,(1 21 nppptv

),..,,(2 21 nppptv

where),..,,(21 nppp are the circuit parameters

• two measured test voltages 1tv and 2tv at a fixed frequency to detect the
fault;

• a symbolic expression still derived from the symbolic circuit solution and
related to a validation point expressed as:

),..,,(21 npppvv

on a third observable node;

• a measured validation voltage vv at the same fixed frequency.

1.3.2 Diagnosis
Like in the previous case, if the rated value of the affecting parameters are

),..,,(21 nppp , and the real values are),..,,(21 nppp , then it will be:

1),..,,(1 21 tvppptv n = ,

2),..,,(2 21 tvppptv n = .

If we assign the rated value to all but two parameters we can write two equations
in two variables. Leaving the (i.e.) first two parameters as the unique unknowns
we get an equation system of the type:

1),..,,,(1 321 tvppxxtv n =

2),..,,,(2 321 tvppxxtv n =

Solving this system with respect to 1x and 2x we obtain the value of 1p and

2p as if they were the parameters that actually affect the fault. Cycling this

calculation through all the possible couples of parameters, at the end we get a
collection of vectors, which can be rearranged in the matrix of the possible
double faults:

III -7

































− nn

n

n

n

n

n

xx

p

pp

pxpxp

p

p

p

p

ppxxp

pxppx

ppxpx

pppxx

121

54321

54321

54321

54321

54321

....

..

......

..........

..

....

..

..

..

.......... .

Each of them is the solution (if it exists) of an equation system and contains n-2
rated values and two hypothetical faulty values. If the circuit behaves as faulty

and only two parameters can be out of their rated values (saying 1x and 2x),

only one of the previous vectors will satisfy the validation equation:

vvxxpppvv

vvpxxppvv

vvppxxpvv

vvpppxxvv

nn

n

n

n

≠

≠
≠
=

−),,..,,,(

..

),..,,,,(

),..,,,,(

),..,,,,(

1321

4321

4321

4321

Thus, checking the validation equations, we get the information about the faulty
parameters, because the i-th satisfied equation corresponds to the i-th component
couple.

1.3.3 Example
Let's consider the very simple resistive circuit of Fig. 30. Parameter values
(reported in ohm in the figure) are still meaningless, because they are intended
just for doing simply demonstrative calculations, like in the previous example.

Fig. 30: Circuit example.

*

At this time we will take loop currents instead of voltages as test functions:

I1 as),,,,(1 54321 RRRRRti ,

I2 as),,,,(2 54321 RRRRRti .

III -8

Taken the voltage on node 1 as validation function,

V1 as),,,,(54321 RRRRRvv ,

and solving symbolically the circuit we get from Mathematica the equations for
ti1, ti2 and vv; for example the corresponding equation for ti1 is:

ti1(R1,R2,R3,R4,R5)==(10 (R2 R4 + R3 R4 + R2 R5 + R 3 R5 + R4 R5)) /

(R1 R2 R4 + R1 R3 R4 + R2 R3 R4 + R1 R2 R5 + R1 R3 R5 + R2 R3
R5 + R1 R4 R5 + R2 R4 R5)

If we simulate a fault by imposing that R2 has value 6 instead of 2 and R5 has
value 7 instead of 5 we get the (simulated) measured test currents and validation
voltage:

493

1270
1=ti ,

493

660
2 =ti ,

493

3660=vv .

If we apply the single fault checking procedure, assuming for example ti1 as test
point and vv as validation point, it fails; that is, no validation equation is satisfied
for the single fault. Therefore it is possible to continue looking for the double
fault.
Cycling the test system through the parameter couples

{{R1,R2},{R1,R3},{R1,R4},{R1,R5},{R2,R3},{R2,R4},{R 2,R5},{R3,R4},{R

3,R5},{R4,R5}},

we obtain equations like the following two ones, given for the possible couple
{R3, R5}:

For each situation we give a vector with the parameter values taken from the
rows of the matrix of the possible double faults, partially reported:

They have to be validated by the equation

493

3660
(..) =vv

The cyclical verification of the previous equation for each row of the matrix
yields the validation vector:

{False,False,False,False, False,False,False,True , ..}

where the “True” at the seventh place indicates the seventh parameter couple,

III -9

that is R2 and R5 are the faulty components, as expected.

1.4 Multiple fault

It might be possible that this method could be extended to the more general case
of multiple fault, because, if the double fault checking procedure fails, it should
be possible in the same manner to continue looking for three faulty parameters,
and so on. The main task wold be to build all the three (or k) components
combinations and to solve the right three (or k) test equations with respect to
those parameter variables in turn. The procedure calculation time grows with the
multiplicity k of the checked fault, but it should still remains a fast procedure due
to presence of the symbolic solution. It is possible that two or more rows satisfy
the validation equation, that is the procedure can only individuate a group of
possible faulty components. To solve this ambiguity we have to change the test
and/or the validation point; if the solution is still ambiguous, changing the
diagnostic technique could be needed [8,10,11]

1.5 Interval algebra for real circuit tolerances

In the previous sections we outlined the ground basis of this method to point out
its formal structure. To handle real circuits we need to take into account
tolerances [6,14]: this can be done without changing the formal structure of the
method, due to its intrinsic symbolic formulation. Rated values and parameter
values can be passed to the symbolic processor as range of values and the further
calculations are performed in a transparent way by the “interval algebra”
embedded in the symbolic processor. For example, a parameter value (R4) is
expressed in Mathematica form as:

R4=Interval[{3.8,4.2}]

for a value of 4 with a ±5% tolerance. Test equations look like the following:

(Interval[{19.99, 20.00}]*(R1*Interval[{2.99, 3.00}] +
Interval[{53.99, 54.10}])) / (R1*Interval[{122.90, 123.00}] +

Interval[{477.98, 478.01}])
==

Interval[{1.67, 1.89}],

which is automatically generated by the test procedure and solved by the
symbolic processor for:

{R1 →Interval[{1.01807,1.95378}]}

1.6 Conclusions for Part One

Considering a symbolic solution of a circuit and the Interval Algebra embedded
in the symbolic processor, the basic idea to have a group of test equations
through which it is possible to check in turn all the correspondent parameter

III -10

groups, seems to yield a simple algorithm for fault location and identification. In
our elementary examples the groups count one or two equations to detect
respectively one or two parameters (single or double fault case), but it could be
hopefully extended to a higher number of parameters. In this case a higher
number of observable nodes is needed. In case of ambiguity it is possible to
change the test and validation group.

1.7 References to Part One

[1] A.Liberatore, S.Manetti: SAPEC A PERSONAL COMPUTER
PROGRAM FOR THE SYMBOLIC ANALYSIS OF ELECTRICAL
CIRCUITS. IEEE Int. Symp. on Circuits and Syst. ISCAS’88, Helsenki
June 1988.

[2] A.Liberatore, S.Manetti: NETWORK SENSITIVITY ANALYSIS VIA
SYMBOLIC FORMULATION. IEEE Int. Symp. on Circuits and Syst.
ISCAS’89, Portland June 1989.

[3] X.Tan, C.J.R. Shi: HIERARCHICAL SYMBOLIC ANALYSIS OF
LARGE ANALOG CIRCUITS WITH DETERMINANT DECISION
DIAGRAMS. Int. Symp. on Circuit and System ISCAS’98.

[4] M. Artioli, F. Filippetti, M. Martelli: IMPROVEMENTS TO THE
FAULT DIAGNOSIS OF LARGE LINEAR ELECTRIC CIRCUITS VIA
IME METHOD. Int. Symp. on Theoretical Electrical Engineering
ISTET'97, Palermo June 1997.

[5] J.W.Bandler, A.E.Salama: FAULT DIAGNOSIS OF ANALOG
CIRCUITS. Proc. IEEE, August 1985, vol.73 n.8.

[6] H.T.Sheu, Y.H.Chang: HIERCHICAL FREQUENCY-DOMAIN
ROBUST COMPONENT FAILURE DETECTION SCHEME FOR
LARGE SCALE ANALOGUE CIRCUITS WITH COMPONENT
TOLERANCES. Proc. IEEE – Circuits Devices Syst.,Februar 1996,
vol.143 n.1

[7] J.L.Huertas: TEST AND DESIGN FOR TESTABILITY OF ANALOG
AND MIXED-SIGNAL INTEGRATED CIRCUITS: THEORETICAL
BASIS AND PRAGMATICAL APPROACHES. Tutorial, European
Conf. on Circuit Theory and Design ECCTD’93, Davos July 1993.

[8] F. Filippetti, M. Martelli: NETWORK SENSITIVITY ANALYSIS OF
LARGE CIRCUITS IN SYMBOLIC FORM. European Conf. on Circuit
Theory and Design ECCTD'95, Istanbul Turkey August 95.

[9] F. Filippetti, M. Martelli: SYMBOLIC TECHNIQUES ADDRESSED TO
THE FAULT DIAGNOSIS OF LAGE LINEAR ELECTRIC CIRCUITS.
IEEE Conf. on Industrial Applications in Power Systems Computer
Science and Telecomunications MELECON’96, Bari Italy May 1996.

[10] R.Voorakaranam, S.Charabarti, J.Hou, A.Gomes, S.Cherubal,
A.Chatterjee, W.Kao: HIERARCHICAL SPECIFICATION-DRIVEN
ANALOG FAULT MODELING FOR EFFICIENT FAULT
SIMULATION AND DIAGNOSIS. IEEE International Test Conference,
1997.

III -11

[11] M. Artioli, F. Filippetti: LINEAR ANALOG CICUIT DIAGNOSIS
BASED ON SYMBOLIC ANALYSIS AND REDUCED OBSERVABLE
POINTS SET. Int. Symp. on Theoretical Electrical Engineering
ISTET'99, Magdeburg September 1999.

[12] G.Fedi, R.Giomi, A.Luchetta, S.Manetti, M.C.Piccirilli: SYMBOLIC
ALGORITHM FOR AMBIGUITY GROUP DETERMINATION IN
ANALOG FAULT DIAGNOSIS. Proc. European Conf. on Circuit
Theory and Design ECCTD’97, Budapest September 1997

[13] G.Fedi, R.Giomi, A.Luchetta, S.Manetti, M.C.Piccirilli: ON THE
APPLICATION OF SYMBOLIC TECHNIQUES TO THE MULTIPLE
FAULT LOCATION IN LOW TESTABILITY ANALOG CIRCUITS.
IEEE Transactions on Circuits and Systems, October 1998, vol.45 n.10.

[14] M.W.Tian, C.J.R. Shi: RAPID FREQUENCY-DOMAIN ANALOG
FAULT SIMULATION UNDER PARAMETER TOLERANCES. Design
Automation Conference DAC’97, Anaheim June 1997.

III -12

2 Part Two – Multifrequency testing

Part Two discusses some symbolic procedures for improving the fault diagnosis
of linear analogue circuits. The procedure, based on IME, belongs to the SAT
(simulation after test) diagnostic techniques, and concerns the parameter
identification approach and the fault verification approach. An Example is
presented by using a simple network to show in detail the feasibility of the
procedure.

2.1 Introduction

The fault diagnosis in analogue circuits, in particular the fault detection and
location, can be developed using several techniques [1], all involving the circuit
simulation, both the simulation before test approach (SBT) and the simulation
after test approach (SAT).
In these techniques the circuit simulation plays a very important role but often
needs of an excessive CPU time as the circuit must be simulated many times in
correspondence of different fault situations.
The symbolic solution of the circuit, that usually can be obtained only for small
circuits, allows us to overcome these difficulties.
Many symbolic techniques are developed to analyse linear circuits [2-4]. IME
easily allows us to get the symbolic responses also of large linear electric circuits
[5,6,7, Chapter II and III]. Besides, if a circuit response to an assigned system of
sources is known, IME allows us to get the response to any different system of
sources simply working up a succession of expressions corresponding to the first
circuit analysis; therefore a further circuit analysis is not needed.
IME method features allow to easy realise diagnostic tasks utilising symbolic
elaborations: in particular by combining the use of the substitution theorem [8]
and of the multifrequency testing.
But the question of resources amount (in terms of required hardware and
software) still remains:, e.g.:a 100×100 matrix representing an electrical linear
network is quite usual, but its completely symbolic inversion was unsuccessful on
a 486DX computer, equipped with 8Mb RAM and a popular calculation package.
The IME method [7,9], like other methods [2,3,4], seems to allow flexibility and
reliability in reaching symbolic solutions. It is based on a simple calculation rule
and allows to split the analysis problem into a sequence of hierarchical
elementary circuit analyses, which can be solved separately reducing the
computation complexity and consequently the requested amount of memory.
These features avoid the well known problems arising in case of symbolic
analysis.
The comparison with a classical inversion method (CME): the minors method, in
term of memory employment (static, dynamic and total memory) is reported in
the next table, for an n×n matrix.

III -13

Table 5:CME and IME Memory allocation.

 CME IME

Static

n2 n n2 3

2

()+

Dynamic n n n()()− −1 2 1

6

0

Total n n n()()+ +1 2 1

6

n n2 3

2

()+

Allocations n! 3n

The comparison in terms of computing time is reported in Fig. 2. The
performance in solving a circuit under several percentage of symbolic
elements,(from a completely numerical circuit elements 0%, gradually to a
completely symbolic ones 100%) is clearly depicted. It is clear that IME method
becomes very suitable as the symbolic elements are increasing.

2.2 Diagnostic procedure

Starting from the IME method ability to provide any requested response of a
circuit in complete symbolic form, improvements can be obtained in the
diagnostic techniques.
In particular the IME method has been used to perform the network sensitivity
analysis of large circuits in [7], and to improve the procedures based either on the
fault dictionary, or on the parameters identification by using the substitution
theorem in [8].

III -14

0 % s y m b o l i c

M a tr i x o r d e r

0
5 0 0

1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0

3 4 5 6 7 8

5 0 % s y m b o l i c

M a t r i x o r d e r

3 4 5 6 7 8

C M E I M E

1 0 0 % s y m b o l i c

M a t r i x o r d e r

3 4 5 6 7 8

Fig. 31:Speed performance of IME and CME.

About the last application we have to emphasise some drawbacks. In fact all the
voltages (or all the currents in the case of mesh analysis) must be observable to
detect a possible fault related to any circuit component, this is not the best way to
face a diagnostic problem.
On the contrary if we restrict the attention on the localisation of the fault, only
few circuit values are needed.
The symbolic linear equations that the IME method provides, look like the
following [8]:

 V1 = F1 (I1, I2, I3,)
(Eq. 1) V2 = F2 (I1, I2, I3,)
 V3 = F3 (I1, I2, I3,)

III -15

 where the V are the measured voltages and the I are the current sources
simulating the considered faults. If we find, from the solution of the linear system
(Eq. 1), that the current I2 is unequal to 0, this means that the fault is localised

on the branches convergent to the node 2. Therefore in order to localise a faulted
branch or some possible faulted branches (a faulted zone), we need to know only
the voltages of the nodes in which current sources are inserted.
After getting this result, to determine the exact faulted branch (or the exact
faulted branches) and to evaluate the perturbed values of the faulted components,
the multifrequency testing method can be used with reduced effort. In fact the
multifrequency testing method, by using for example as test point the node 1,
provide symbolic non linear equations that look like the following [8]:

 V1(ω1) = M1 (p, ω1)

(Eq. 2) V1(ω2) = M2 (p, ω2)

 V1(ω3) = M3 (p, ω3)

where p represents the parameters vector. Obviously the equation number, and
consequently the number of test points or test frequencies [10] depends on the
parameters vector order. As higher is the order of p as harder is the solution of
the non-linear system (Eq. 2).
If the faulted zone is known, it is possible to replace the parameters out of the
faulted zone with the numerical nominal values, and to leave as unknowns the
parameters into the faulted zone. In this way the solution of (Eq. 2) is certainly
easier and quite immediate if only one parameter is unknown [10].
Therefore a good idea is to use IME method as depicted in [8] to localise the
fault zone, and then to use again the IME features to provide the system (Eq. 2)
in order to apply the multifrequency testing method in reduced form, as
previously explained. The following application example shows this technique.

2.3 Example

As an example, the simple circuit already considered in [1,8] has been chosen
(Fig. 32). Let’s suppose the faulted zone include only the node 2 and Vo be the
observed variable. Recalling the previous considerations we have to consider as
unknowns the parameters R3, R4, C2 and C3 pertaining to the node 2, and we
have to assign the nominal values to the unfaulted components R1, C1, R2.

III -16

Fig. 32: Sample circuit.

To perform the diagnosis by applying the multifrequency testing method the
following steps are needed:

1) A circuit analysis in the Laplace domain to provide the transfer function of the
observed voltage Vo in symbolic form;

2) Construction of the system (Eq 2). Due to the presence of four unknowns and
one test point, we have to perform two measurements at two different frequencies
Vo(ω1) and Vo(ω2). The corresponding equations

 Vo(ω1) = M1 (p, ω1)

(Eq. 3) Vo(ω2) = M2 (p, ω2)

can be split into the Real and Imaginary part, giving the four non-linear equations
needed to evaluate the 4 unknowns.
The nominal values of our test circuit are R1 = R4 = 1MΩ, R2 = 10MΩ, R3 =
2MΩ, C1 = 0.01µF, C2 = C3 = 0.001µF. The chosen test frequencies are 10 and
200 rad/sec. At these frequencies for +30-percent deviations in the circuit
element R3 and C2, from the measurements we have obtained:

 Vo(10) = 0.902 - 0.073 I
 Vo(200) = 0.318 - 0.430 I

Therefore the system (Eq. 3) becomes:

 +0.902 = Re[M1 (p, 10)]
 -0.073 = Im[M2 (p, 10)]

 +0.318 = Re[M3 (p, 200)]
 -0.430 = Im[M4 (p, 200)]

III -17

The equations automatically provided by IME are here reported in Mathematica
format:

The Laplace variable s has been replaced by I*ω and then ω by the corresponding
test frequencies 10 and 200 rad/sec. About the parameter vector p the elements
out of the faulted zone (R1 C1 R2) have been replaced by their nominal values,
remaining as symbols the other elements.

III -18

2.4 Conclusions for Part Two

A symbolic and semi-symbolic technique applied to the fault diagnosis of linear
electric circuits has been discussed. This technique, based on the circuit analysis
method IME, is pertinent to the parameter identification approach.
The generation of suitable symbolic equations through IME is easy for wide
circuits too, while solving them can be very hard in this case, due to the
non-linearity of the expressions and the high number of unknowns. Thus, an
application of this diagnostic technique based on the substitution theorem allows
first to restrict the faulted zone, and then the multifrequency testing method can
be applied with a reduced number of unknowns providing an efficient way to
determine the perturbed values of the faulted components.
A simple example is developed in detail, to show the features and the
improvement obtained by utilising this technique

2.5 References to Part Two

[1] J.W. Bandler, A. Salama: FAULT DIAGNOSIS OF ANALOG CIRCUITS
- Proc.IEEE, August 1985, vol.73,n.8, pag 1279/1325.

[2] A. Liberatore, S. Manetti: SAPEC A PERSONAL COMPUTER
PROGRAM FOR THE SYMBOLIC ANALYSIS OF ELECTRIC
CIRCUITS, 1988 IEEE ISCAS, Helsinki, June 1988.

[3] A. .Liberatore, S. Manetti: NETWORK SENSITIVITY ANALYSIS VIA
SYMBOLIC FORMULATION, 1989 IEEE ISCAS, Portland, June 1989.

[4] M. M. Hassoun, P. M. Lin: A NEW NETWORK APPROACH TO
SYMBOLIC SIMULATION OF LARGE SCALE NETWORKS, 1989
IEEE ISCAS, Portland, June 1989.

[5] F. Filippetti, M. Martelli: A METHODOLOGY FOR THE SYMBOLIC
ANALYSIS OF LINEAR ELECTRIC CIRCUITS, Jornadas Hispano
Lusas de Ingenieria Electrica, July 1990, Vigo (Spain).

[6] F. Filippetti, M. Martelli: SYMBOLIC TECHNIQUES TO GENERATE
THE EQUATIONS OF REPEATING STRUCTURE CIRCUITS,
SMACD'94, October 1994, Sevilla (Spain).

[7] F. Filippetti, M. Martelli: NETWORK SENSITIVITY ANALYSIS OF
LARGE LINEAR CIRCUITS IN SYMBOLIC FORM, ECCTD '95, August
1995, Istanbul (Turkey)

[8] F. Filippetti, M. Martelli: SYMBOLIC TECHNIQUES ADDRESSED TO
THE FAULT DIAGNOSIS OF LARGE LINEAR ELECTRIC CIRCUITS,
IEEE Conf. on Industrial Applications in Power Systems Computer Science
and Telecomunications MELECON’96, Bari Italy May 1996.

[9] F. Ciampolini: A METHOD TO ANALYZE LINEAR ANALOG
CIRCUITS (In Italian), L’Elettrotecnica N. 10, Oct. 1963.

[10] J. L. Huertas, TEST AND DESIGN FOR TESTABILITY OF ANALOG
AND MIXED-SIGNAL INTEGRATED CIRCUITS: THEORETICAL

III -19

BASIS AND PROGRAMMATICAL APPROACHES Selected Topics in
Circuits and Systems, Elsevier Science Publishers 1993.

IV -1

Chapter IV

Reflection on circuit analysis

Starting from the same basic idea, that is, particularizing a general symbolic
expression imposing definite transformation rules, two circuit analysis procedure
are proposed. The first one for switching circuits and the second one for
piecewise-linear circuits.

1 Part One - A procedure for switching circuits

Part One is intended to show the feasibility of implementing symbolic techniques
for the analysis and design of switching circuits. In particular, the symbolic
approach, based on symbolic analysis in the Laplace transform domain, is applied
to DC-DC switching converters. Several topologies, including resonant ones [1],
are considered as examples showing the method implementation and its related
features and advantages.
To study switching circuits, one needs analysis methods even more efficient and
flexible. Several time-domain analysis methods have been proposed, for example
in [2-9], and recent versions of PSPICE allow switched networks with non-ideal
switches to be treated, leading sometimes to non-accurate solutions and/or
convergence problems.
In general, the above methods are acceptable for some switched networks but
they suffer of the most common problems of such an approach:

• discontinuities at the switching instants and possible Dirac impulses are not
considered;

• difficulty of implementing circuit equations in computer programs;
• restriction to only one topology change at each switching instant.

More general drawbacks are:

IV -2

• the switching times of internally controlled switches must be determined;
• the correct topology after switching must be determined.

The aim of this chapter is to propose a general analysis method free from the
above mentioned limitations.
The method is based on a symbolic processor which can determine any circuit
response in a completely symbolic form, and also on the intrinsic behaviour of
DC-DC converters. A large-signal time-domain analysis for this kind of circuits
is based on these facts:

• at any given time each switch is in ON or OFF state and the network contains
only linear components arranged in a corresponding topology;

• the equations for each topology are integrated until an event causes a state
change for one or more switches;

• eventually the topology is updated and the procedure is cyclically repeated till
a specified time or the occurrence of specified conditions.

The circuit behaviour is usually well known and there should not be any problem
to individuate the topological configurations of all ON-OFF combinations of the
switches. As it will be explained in the following subsections, this idea of
“configuration” can be extended, using the proposed method, to the occurrence
of internal events which determine a substantially different behaviour of the
network, even if they do not determine a topology change. This new situation can
have the same topology of the previous one, but with different parameter
characteristics. In this sense, the proposed method can be addressed as an
“event-driven method”.

1.1 Symbolic technique

After each commutation or, more generally, after each proper event, a
configuration change occurs, so that the behaviour of the network can be seen as
a sequence of circuit configurations. Each configuration can be handled as a
linear circuit with initial conditions given by the final values assumed in the
previous configuration [2,6,7]. Thus, it is possible a symbolic approach for this
kind of converters by means of a suitable symbolic processor [10]. Through
symbolic techniques, one can automatically get a mathematical description for
each circuit configuration in the Laplace transform domain [11,12], and, once the
symbolic processor has solved each configuration equations, the behaviour of the
whole converter can be studied and designed through the method explained in the
next subsection.
In Fig. 33, the popular buck converter is shown.

IV -3

Fig. 33: Ideal buck converter.

In this circuit there are two switches: the external one S and the internal one D,
and four configurations are possible. From the initial condition where S is ON
and D OFF, when S is switched OFF the voltage polarity across L changes and D
is switched ON in accordance to it. Definitely, only the two configurations of Fig.
34 and Fig. 35 are involved in the circuit behaviour. We remember, of course,
that all parameters in these schemes are ideal. For this circuit in the
configuration, shown in Fig. 34, the symbolic processor gives the following
symbolic expression for the inductor current in the s-domain:

2
0

2
0

2

)1(

)(

)1(
)(

CLRsLsR

CRv

CLRsLsR

CRsLi

CLRsLsR

CRs

s

E
sI CL

L ++
−

++
++

++
+=

where iL0 and vC0 are the inductor current and capacitor voltage just before S is
turned ON.
We emphasise that through the symbolic analysis it is easy to put in evidence the
most relevant terms in an expression: in our example the forced response term
and the natural response terms are separated. The same expression is still valid
for the configuration of Fig. 35 as well. As a matter of fact, the two
configurations are similar, except for the voltage source E, that can be easily set
to zero by the symbolic processor.

Fig. 34: Buck converter when the switch S is ON.

IV -4

Fig. 35: Buck converter when the switch S is OFF.

1.2 Proposed method

The concept is to monitor the conditions for ON/OFF states of the switches and
use the linear model accordingly, to provide segments of responses and build the
circuit evolution. Model updating is performed automatically after each segment,
whose length is pre-set. The proposed method is summarised in the basic scheme
shown in Fig. 36. Starting from a known initial configuration, the circuit response
is computed from symbolic solutions. At the switching instant, the actual values
of the variables iL and vC become the initial values of the new situation.
Switching can occur due to external commands or internal events, i.e., a
switching element could switch as a consequence of a previous switching. Both
cases can be managed by rules suitably formalised and related to the switching
strategy: for example, a state change when a current is zero, if we are dealing
with a kind of resonant converter.
Because of the limited number of possible configurations and well known
behaviour of DC-DC converter circuits, no general technique has been
introduced to move from a configuration to another one. We referred, instead, to
rules that link the different configurations for each circuit studied, but it is
possible to implement general techniques [9-11] as well, that allow one to find
the configuration following any previous one as a result of a switching event,
without any “a priori” knowledge of the circuit evolution.

IV -5

Initial condition setup
for the new configuration

Next configuration individuation
(Decisional phase)

Switching
(external or internal)

End

Event monitoring

Time domain responses

Symbolic response retrieval

Start up configuration definition and related initial conditions

Fig. 36: Basic scheme of the proposed method.

Since the circuit transition to a new configuration can be caused by switching or
by an intrinsic event (like a voltage that becomes zero) a variable monitoring is
performed to ascertain whether some rules are violated or not and then to process
the next situation. With this approach the buck converter was examined and some
of the results are depicted in Fig. 37 for the circuit with the following parameter
values, already reported in [11]: E = 201 V, L = 3 mH, C = 4.2 µF, R =20 Ω,
switching frequency fs = 40 kHz, duty cycle = 0.4.

Fig. 37: Buck converter waveforms for inductor current and capacitor voltage.

IV -6

1.3 Advantages

The symbolic processor (in particular the IME processor [14,15, Chapter II])
allows us to generate and manipulate expressions. These capabilities produce
several advantages:

1. the method uses linear techniques only and therefore a solution is always
reached;

2. prediction of the next configuration by monitoring that suitable electrical
signals verify particular conditions; this decisional step is performed by
activating an inferential engine based on a set of production rules related to
the circuit behaviour: this leads to a simple approach to the circuit;

3. symbolic expressions allow one to easily study the influence of parameter
variations, simulating the circuit only by substituting the new values;

4. semi-symbolic expressions can be automatically generated, where only the
most relevant parameters are left in symbolic form to get simple constitutive
relationships; for example for design purposes, parasitic elements can be
introduced to study their influence;

5. nonlinearities can be introduced with PWL characteristics (in this case the
“event” is the transition across two different linearity regions) or with
parameters that gradually vary while the circuit switches towards another
configuration.

To highlight the features of the method, some cases are presented herein. In
particular, Fig. 38 shows the waveforms of the inductor currents and capacitor
voltage when the inductance is changed from 3 mH to 2 mH and to 1 mH: as the
inductance decreases, the current ripple gets bigger and the voltage ripple across
the capacitor increases accordingly.

IV -7

Fig. 38: Buck converter waveforms when the inductance is set to the values 3 mH

(a), 2 mH (b) and 1 mH (c).

Then, we can consider the possibility that L is a saturable inductor with the
characteristic given in Fig. 39. Now, Fig. 40 shows inductor currents and
capacitor voltages when the duty cycle is 0.2, 0.5 and 0.8, and when the
capacitance is 500 nF highlighting the saturation effect. We notice that a duty
cycle approaching unity produces an evident ripple in the inductor current which
is reflected also on a higher ripple in the voltage across the capacitor.

0 1 2 3 4 5 6 7 8 9 1 0
0

0 .5

1

1 .5

2

2 .5

3

A

m
H

Fig. 39: Saturable inductor characteristic.

IV -8

Fig. 40: Buck converter waveforms when L is a saturable inductor and the duty

cycle is 0.2 (a), 0.5 (b) and 0.8 (c).

Let’s consider now the boost converter (Fig. 41), whose parameter values are E =
5 V, L = 50 µH, C = 100 µF, R =15 Ω, fs = 50 kHz, duty cycle = 0.5, as used in
[6]. Fig. 42 shows the waveforms of the inductor current and capacitor voltage in
a particular case, that is for a step change of the input voltage E from 5 V to 6 V
about 3 ms after start-up.
We emphasise that this method allows circuit analysis either in completely ideal
situations or with real components, and that all these points are helpful for the
optimal circuit design according to the developed switching strategy. In fact, it is
possible to simulate the circuit with totally ideal components at first. Then,
introducing parasitic elements, non-linearities, etc., and using the same symbolic
solution, one can model the circuit in a more real way.

Fig. 41: Ideal boost converter.

IV -9

Fig. 42: Boost converter waveforms for a step change of the input voltage.

1.4 Resonant topologies

The great flexibility of the proposed method allows more complex analyses to be
performed in an efficient way. For example, we can suppose to add a resonant
switch to the base buck converter. In Fig. 43 we report an L-type half-wave
resonant DC-DC converter, where the capacitor between L2 and R has been
removed for simplicity reasons. The chosen parameters are: E = 201 V, L1 = 2.5
µH, L2 = 3 mH, C = 18 nF, R = 10 Ω, fs = 500 kHz, duty cycle = 0.4. The values
for C, L1 and for the duty cycle are chosen so that the current through L1 is zero at
the external switching instant, that is, the circuit works in resonant mode. For this
circuit, the preliminary analysis shows that four topological configurations are of
concern, but, for shortness, we report only the discharge phase configuration,
when the load current is sustained by the capacitor C. In the Laplace transform
domain this configuration is depicted in Fig. 44.

Fig. 43: L-type half-wave resonant DC-DC converter.

IV -10

Fig. 44: Discharge phase configuration in the Laplace transform domain.

For this circuit the capacitor voltage in symbolic form is:

2
2

02

2
2

0

11

1
)(2

sCLCRs

iL

sCLCRss

v
sV

LC
c ++

−
++

−=

where vC0 and iL20 are the values of the current through L2 and the voltage across
C at the end of the previous resonant phase. This response allows us to monitor
when the capacitor C will be discharged to determine the switching time of the
diode. During the decisional phase, the rule that activates this response segment
is of the type:

IF Vc > 0 & S_state = OFF THEN discharge phase.

The related implementation problem will be discussed in the next subsection.
Some results for the considered resonant converter are reported in Fig. 45, Fig.
46 and Fig. 47.

0 2 4 6 8 10 12 0

0.5

1

C
ur

re
nt

 th
ro

ug
h

R
 (

A
)

0 2 4 6 8 10 12 -10
0

10
20

C
ur

re
nt

 th
ro

ug
h

L1
 (

A
)

0 2 4 6 8 10 12 0

200

400

V
ol

ta
ge

 a
cr

os
s

C
 (

V
)

time (µs)

V
ol

ta
ge

 a
cr

os
s

C
 (

V
)

Fig. 45: Beginning of the start-up phase for the resonant buck converter.

IV -11

0 200 400 600 800 1000 1200 0
5

10
15

C
ur

re
nt

 th
ro

ug
h

R
 (

A
)

0 200 400 600 800 1000 1200 0

20

40

 C
ur

re
nt

 th
ro

ug
h

L1
 (

A
)

0 200 400 600 800 1000 1200 0
200
400
600

V
ol

ta
ge

 a
cr

os
s

C
 (

V
)

time (µs)
Fig. 46: Waveforms for the resonant buck converter, from power-on until steady

state is reached.

980 985 990 995 1000 1005 12.85

12.9

12.95

C
ur

re
nt

th

ro
ug

h
R

 (
A

)

980 985 990 995 1000 1005 0

20

40

C
ur

re
nt

 t
hr

ou
gh

 L
1

(A
)

980 985 990 995 1000 1005 0
200
400
600

V
ol

ta
ge

 a
cr

os
s

C
 (

V
)

time (µs)
Fig. 47: Steady state waveforms for the resonant buck converter.

During the start-up phase (Fig. 45) it is noticeable that the zero instants of the
current through inductor L1 are not equal spaced because the circuit has not
reached the complete resonant condition yet. As Fig. 46 shows, after 800 µs the
steady state in complete resonant condition is reached, as depicted in detail in
Fig. 47, where periodic waveforms are reported.

IV -12

1.5 The implementation of the proposed method

The proposed method can be applied to any kind of switching circuit. We applied
it to the resonant buck converter of Fig. 43, to test the reliability of the event
driven approach, due to the relative “hardness” in treating resonant circuits.
The procedure has been developed in a Mathematica™ environment, thus it was
written in a C-like form. The program implementation follows the simple scheme
reported in Fig. 36. After we have stored the symbolic solution in the system
memory (in mass memory devices as well, if the circuit is really huge) and after
the initialisation block, a loop begins. Inside the loop, until the simulation end
time is reached, this job is done:

• the time response is calculated by the inverse Laplace transform of the
symbolic solution for the actual configuration;

• this time response is scanned at the sample times to check whether a rule
becomes satisfied. This is the decisional block: the next configuration is
selected depending on the event occurrence and every event, the external
ones as well, is checked through rules;

• the new configuration and its initial conditions are set and the output is
updated, reporting the valid time response segment between the
configuration change instants.

The procedure cannot be considered “a tool” yet, because, from the software
point of view, it is not completely automated and integrated as PSPICE is, even if
simulations times are comparable with those needed by PSPICE. In perspective,
the method implementation will be made more flexible and capable of easy
including any kind of rule.

1.6 Conclusions for Part One

In Part One, a flexible methodology has been proposed, trying to alleviate some
troubles concerning power converter simulation, as well as convergence
problems. The procedure has been tested on several DC-DC converter
topologies, including resonant ones. The results seem to be satisfactory because
the method always guarantees a solution with simulation times comparable to
PSPICE simulations, and due to the fact that it is possible, using the same
symbolic solution, to move from an ideal circuit analysis gradually to a real
circuit analysis. At the moment the procedure cannot be considered as a complete
circuit simulation environment, but a contribution to develop tools for
approaching a class of circuits, traditionally hard to treat, referring in particular
to resonant circuits.

1.7 References to Part One

[1] A. Liberatore, A. Reatti, ABOUT RECENT SWITCHING
TECHNIQUES FOR DC-DC CONVERTERS, L’Energia Elettrica, No.
12, 1989, pp. 601-620, (in Italian).

IV -13

[2] M. K. Kazimierczuck, D. Czarkowski, RESONANT POWER
CONVERTERS, John Wiley & Sons, Inc, New York, 1995.

[3] Opal, J. Wlach: CONSISTENT INITIAL CONDITIONS OF LINEAR
SWITCHED NETWORKS IEEE Trans. Circuits Syst. I, vol. 37, pp. 364-
372, Mar. 1990.

[4] Liberatore, S. Manetti, M. C. Piccirilli, A. Reatti, SIMULATION OF
SWITCHING POWER CONVERTERS USING SYMBOLIC
TECHNIQUES, Alta Frequenza, No. 6, 1993, pp. 16/304-23/311.

[5] R. J. Dirkman, THE SIMULATION OF GENERAL CIRCUITS
CONTAINING IDEAL SWITCHES, IEEE Power Electron. Special.
Conf., 1987, pp. 185-194.

[6] D. Bedrosian, J. Vlack, TIME-DOMAIN ANALYSIS OF NETWORKS
WITH INTERNALLY CONTROLLED SWITCHES, IEEE Trans.
Circuits Syst. I, vol. 39, pp. 199-212, Mar. 1992.

[7] A. Massarini, U. Reggiani, COMPUTER-AIDED TIME- DOMAIN
LARGE-SIGNAL ANALYSIS OF NETWORKS WITH SWITCHES,
IEEE Int. Symp. on Industrial Electron., ISIE’96, 1996, vol.2, pp. 567-
572.

[8] A. Massarini, U. Reggiani,, M. K. Kazimierczuck, ANALYSIS OF
NETWORKS WITH IDEAL SWITCHES BY STATE EQUATIONS,
IEEE Trans. Circuits Syst. I,. vol. 44, pp. 692-697, Aug. 1997.

[9] R. M. Lamaison, A. Esquivel, J. Bordonau,, J. Peracaula, A
GENERALIZED APPROACH TO OBTAIN THE STEADY-STATE
CHARACTERISTICS OF DC/DC AND DC/AC RESONANT
CONVERTERS, Eur. Conf. on Power Electron. and Appl., EPE’99,
1999.

[10] A. Liberatore, S. Manetti, SAPEC A PERSONAL COMPUTER
PROGRAM FOR THE SYMBOLIC ANALYSIS OF ELECTRICAL
CIRCUITS, IEEE Int. Symp. on Circuits and Systems, ISCAS’88, 1988.

[11] M. Artioli, F. Filippetti,, M. Martelli, IMPROVEMENTS TO THE
FAULT DIAGNOSIS OF LARGE LINEAR ELECTRIC CIRCUITS VIA
IME METHOD, Int. Symp. on Theoretical Electrical Engineering,
ISTET'97, 1997, pp. 156-159.

[12] M. Artioli, F. Filippetti, LINEAR ANALOG CIRCUIT DIAGNOSIS
BASED ON SYMBOLIC ANALYSIS AND REDUCED OBSERVABLE
POINT SET, Int. Symp. on Theoretical Electrical Engineering, ISTET'99,
1999, pp. 485-489.

IV -14

2 Part Two - A procedure for piece-wise linear
circuits

Part Two is intended to show an approach to directly translate linear methods to
PWL circuit problems. The basic idea is to hide the non-linearity to the linear
method, so that the user can handle the PWL problem as if it was a linear one. So
doing writing equations for a PWL circuit can be extremely simple and fast, since
the PWL formulation becomes a linear formulation. Moreover, since it is
possible to use usual linear solvers, the solution is improved as well. This
approach is based first on symbolic formulation and calculations, then on rules
application, which deliver to the symbolic processor the task to deal with the
PWL aspects of the problem. A Mathematica procedure dedicated to this aim will
be suggested, together with a practical example where a four-diode rectifier is
handled as a linear circuit.

2.1 Introduction

PWL techniques are often based on numerical computations or need to
implement a kind of linear programming technique in order to reduce this amount
of computations, even if the PWL circuit problem is, in some circumstances,
ideally quite simple [1,2]. A symbolic approach to this problem could be
interesting [3,4].
We assume to work with piecewise linearized characteristics, defined on the
entire real axis and strictly monotone in each interval of the real axis obtained
dividing it at each breakpoint of the linearized characteristic. Thus they are
represented by continuous functions on the real axis, generally not derivable at
the breakpoints but derivable and monotone between two consecutive
breakpoints and between infinity and the nearest breakpoint.
In each interval every characteristic is linear, therefore the solution for each
region of the solution space can be found (if it exists) combining linear equations.
Furthermore, excluding pathological cases, the symbolic solution of a linear
system always exists, so the basic idea is to deliver a part of the computation
workload to a procedure which can find a general symbolic solution using linear
tools and then to particularize it numerically or semi-symbolically as needed.
As a simple example we’ll consider an ideal rectifier with four identical diodes,
described by a seven-segment line, but we remember that symbolic solutions for
relatively wide circuits can be calculated via IME method [5,6,7, Chapter II].

2.2 Symbolic approach

Mathematica is a commercial package whose built-in mathematical kernel is
oriented to lists, rules applications and symbolic manipulations. This fact allows
to directly handle problems in a more abstract way [5,6,7,8].

IV -15

Since PWL circuits are basically linear circuits when considered on a single
region of their dominion, the idea is to transfer a linear solving method to PWL
circuits, hiding to the method this particular kind of non-linearity.
With this kind of symbolic “macro” solutions, calculated in a linear way, and
with a symbolic processor capable of applying mathematical and logical rules to
any kind of expression, is possible to take in account the non-linearity as well.
That is, instead of finding all particular solutions (one per region) the suggested
technique allows to determine a general symbolic solutions which can be easily
and quickly particularized for each region.

2.3 Symbolic technique

To realize a procedure, using Mathematica features, the fundamental
configuration steps are:

1. choice of the shape of the characteristic of each PWL component, that is
describing each region on the characteristic plane with a couple of
numbers: threshold and slope;

2. description of the complete set of characteristics by means of a list of
Mathematica rules;

3. writing symbolic equations system of the circuit as if all components
were linear. Each PWL component is denoted by a variable name, which
will never contain the actual value of the parameter for that component,
but acts as a simple placeholder in solving the system.

At this point the automatic Mathematica procedure starts and follows these steps:

1. expansion of each placeholder in couple of unique symbols which
represent threshold and slope in a generic region for that component;

2. solution of the linear system, finding a unique general symbolic
solution, if it exists;

3. generation of the regions of the PWL solutions space, obtained by
crossing the regions of the characteristics. This results in sets of
inequalities in several variables;

4. expressing these variables in terms of a single variable (i.e: current or
voltage supply): this can be obtained by symbolical manipulation of the
starting linear equations;

5. solution of the inequalities system with respect to this single variable:
the result is that all regions are expressed in terms of the source
variable;

6. elimination of all non-admissible regions and particularization of the
general solution for every admissible region;

7. merging the particularized solutions with interval functions in a
all-in-one Mathematica expression which represents the general
symbolic solutions of the circuit, disregarding validity regions (except
for the starting hypothesis, of course).

IV -16

2.4 A practical example

Let’s consider the very simple resistive network of Fig. 48 (parameter values are
not reported because we are only interested in pure symbolic calculations).

v==-i2 R2+i4 R4
v== i1 R1 –i3 R3
v== i1 R1+(i1+i3)R+i4 R4
i1+i3==i2+i4

Fig. 48: Linear resistive circuit and related equations.

The network can be solved, for example, using branch currents (numbered like
the resistors), by the system of equations in Fig. 48. This system can be written
directly, due to the fact that all components are linear. If non-linear components
are present, other electrical considerations are needed before writing down the
system. For example: let’s consider the four-diode rectifier shown in Fig. 49.
It has the same topology of the previous network, but there are four non-linear
components (that we will represent with PWL devices) which have several
combinations of on-off states. These configurations should have to be analysed
before getting a symbolic solution (one or more expressions) in a traditional way.

Fig. 49: Sample PWL circuit.

Through the proposed method it is possible to approach this PWL circuit as if it
were a linear circuit. The non-linearity (PWL type, in our case) is collected and
hidden in mathematical boxes, so that the circuits appears like in Fig. 50.

IV -17

v==-i2 D2+i4 D4
v== i1 D1 -i3 D3
v== i1 D1+(i1+i3)R+i4 D4
i1+i3==i2+i4

Fig. 50: Circuit with hidden non-linearity and related pseudo-linear equations.

At this point it is possible to write down linear equations like in Fig. 50, where
D1, D2, D3 and D4 are considered generic linear resistors. These equations are
formally identical to those of Fig. 48.
The four diodes are of the same type and we will assume for them the same
characteristic, which is represented by a list of points on the i-v plane. They are
obtained from a PSPICE component characteristic, and they will be written in
Mathematica as:

breakpoints={{-12*10^-3,-5},{0,0},{10^-3,691*10^-3} ,{20.5*10^-
3,728*10^-3},{250*10^-3,867*10^-3},{1,961*10^-3}}

These points are the breakpoints between segments which approximate the
characteristic (step 1) shown in Fig. 51. The list of points is first automatically
converted into a data structure for each diode, containing much more
information, like: slope of the segments, name and variables of the characteristic.
For diode 1, this will be:

diodeline=PWLLine[breakpoints];
diodecharacteristic=PWLCharacteristic[D1,{i1,v1},di odeline]

Then these data structures will be manipulated to generate a list of rules
concerning slope and threshold in each region for every diode (still step 2). In the
example below, mD1 and qD1 indicate slope and threshold for diode 1 in a
couple of regions:

{..{mD1 -> 0.125333, qD1 -> 0.835667, 0.25 <= i1},{ mD1 -> 1.89744,
qD1 -> 0.689103, 0.001 <= i1 < 0.0205}..}

IV -18

Fig. 51: Mathematica plot of the diode characteristic.

At step 3 D1, D2, D3 and D4 would be linear components in a circuit under DC
current and a linear system can be described. We emphasize again that the system
could be obtained through whatever linear method and that it will be solved as
linear, because the non-linearity is embedded in the rules structure and thus
transparent to the linear solver. Referring to our circuit the system will be:

LinearSys={ v==-i2 D2+i4 D4,
 v== i1 D1 -i3 D3,
 v== i1 D1+(i1+i3) R+i4 D4,
 i1+i3==i2+i4}

It stems that, if a library of non-linear components is available, and it is
formalized in agreement with the conventions shown above, it is possible to
analyse any circuit using that components, by simply writing linear equations,
because the non-linearity is automatically handled by the Mathematica program.
Then, the program itself expands each D symbol in two correlated symbols: mD
(slope) and qD (threshold); then it solves this system with the normal built-in
Mathematica Solve function to obtain a general and generic solution containing
the same parameters mD and qD that are subject to the previous rules:

{i1 -> -((2 + mD2 + qD1 + mD2*qD1 + qD2 + mD2*vi)/
 (mD1 + mD2 + mD1*mD2)),
 i2 -> -((2 + mD1 + qD1 + qD2 + mD1*qD2 - mD1*vi)/
 (mD1 + mD2 + mD1*mD2)),
 i -> -((mD1 - mD2 - mD2*qD1 + mD1*qD2 - mD1*vi - mD2*vi)/
 (mD1 + mD2 + mD1*mD2)),
 vu -> -((-mD1 + mD2 + mD2*qD1 - mD1*qD2 - mD1*mD2 *vi)/
 (mD1 + mD2 + mD1*mD2))}

Through the symbolic manipulation of the inequalities that describe the regions
for each diode, we obtain the admissible regions for the circuit as reported at step
6,7,8 and as here (partially) shown:

IV -19

admregions={
 -19 -19
 -2.13151 10 < v < 2.13151 10 ,
 -19
 -1.38134 < v < 1.60437 10 ,
 -16 -17
 -1.52564 10 <= v < -5.52705 10 ,
. . .
 v >= 1.98133}

These admissible regions become part of that data structure which is used to
indicate rules for variables.
Applying these rules to the generic solution of the linear system we will obtain a
single semi-symbolic solution particularized for our circuit. That is, a single
expression that “knows when to switch” to a particular value depending on the
region of the solution space (step 9,10). For example the current i1 is partially
reported:

i1->
 -6
-4.60 10 (290598. -174080. v) If[v >= 1.98,1.,0]+
 -6
-2.59 10 (-298.59 -669.99 v) If[-1.98 < v <= -1.47, 1.,0] -
 . . .

Fig. 52: Mathematica plot of the output voltage.

Fig. 53: PSPICE plot of the output voltage.

IV -20

This solution can be directly handled by Mathematica to plot the rectified voltage
on the resistor (Fig. 52). The same plot obtained by a PSPICE simulation is
shown in Fig. 53 for comparison.

2.5 Conclusions for Part Two

In Part Two we showed that the analysis of resistive PWL circuits is easy to
implement and relatively fast to be executed, allowing a linear approach to
piecewise linear circuits, because the non-linearity is hidden to the solver and, as
a matter of fact, the equations are linear, avoiding convergence problem so
common in many simulators. The non-linearity workload is transferred to the
process of screening between admissible and non-admissible regions and to the
particularization of a generic solution.
Particularization of a solution is still not an heavy duty because, at symbolical
level, Mathematica rules applications are similar to strings substitution.
The final solution (but the particularized solutions too) are still in a symbolic
form, of course, which is ready for further normal manipulations under
Mathematica session like plotting, storing, and calculating.
We proposed, not a complete environment for PWL circuit simulation, but a
possible approach to this kind of problem. The procedure can be embedded in a
more complex Mathematica program, provided with a reliable user interface to
build a new tool to handle PWL circuits or it can be simply used as intermediate
procedure between the user and an existing tool.

2.6 References to Part Two

[1] S. Pastore, A .Premoli, CAPTURING ALL BRANCHES OF ANY ONE-
PORT CHARACTERISTIC IN PIECEWISE-LINEAR RESISTIVE
CIRCUITS, IEEE Trans. On Circuits And System, vol.43, n.1, Jan 1996.

[2] L.O.Chua, L.A.Desoer, E.S.Kuh, LINEAR AND NON LINEAR
CIRCUITS, McGraw-Hill.

[3] A. Liberatore, S .Manetti, SAPEC A PERSONAL COMPUTER
PROGRAM FOR THE SYMBOLIC ANALYSIS OF ELECTRICAL
CIRCUITS, IEEE I nt. Symp. on Circuits and Systems, ISCAS’88, 1988.

[4] A .Liberatore, S.Manetti, NETWORK SENSITIVITY ANALYSIS VIA
SYMBOLIC FORMULATION, IEEE ISCAS, Portland Jun 1989.

[5] F. Filippetti, M. Martelli, SYMBOLIC TECHNIQUES ADDRESSED TO
THE FAULT DIAGNOSIS OF LARGE LINEAR ELECTRIC
CIRCUITS, IEEE Trans. On Circuits And System, 1996.

[6] F. Filippetti, M. Martelli, A METHODOLOGY FOR THE SYMBOLIC
ANALYSIS OF LINEAR ELECTRIC CIRCUITS, Journadas Hispano-
Lusas de Ingegneria Electrica, Vigo Jul 1990.

[7] M. Artioli, F. Filippetti, M. Martelli, IMPROVEMENTS TO THE
FAULT DIAGNOSIS OF LARGE LINEAR ELECTRIC CIRCUITS VIA
IME METHOD, Int. Symp. on Theoretical Electrical Engineering,
ISTET'97, 1997, pp. 156-159.

IV -21

[8] M. Artioli, F. Filippetti, LINEAR ANALOG CIRCUIT DIAGNOSIS
BASED ON SYMBOLIC ANALYSIS AND REDUCED OBSERVABLE
POINT SET, Int. Symp. on Theoretical Electrical Engineering, ISTET'99,
1999, pp. 485-489.

V-1

Chapter V

Virtual instruments

1 Introduction

This chapter represents a kind of short briefing about some activities of the
Author in a field of interest which is not directly based on the Symbolic Calculus,
but which could be merged great with it.
The intention was to investigate a feasible solution to integrate analysis and
diagnosis symbolic algorithms in a diagnostic tool. A pre-existent version of a
LabVIEW-based diagnostic system (at the Department of Electrical Engineering,
University of Bologna) seemed to be a good starting point, due to its hierarchical
open structure and due to the advanced interface functions of the LabVIEW
environment.
Here are presented new solutions implemented in this diagnostic system, realized
as global instrument for on-line electromechanical system integrity assessment.

2 Why a global intrument

Electromechanical system condition monitoring meets increasing attention, since
the costs for unexpected outages are growing with the rate of applied technology.
It seems that a definite need exists for all motor failure prediction devices,
matched to detect and predict different kinds of onsetting faults. These devices
should meet the characteristics of a broad variety of machines and operate with
nameplate data and non-invasive sensors [1].
Spectrum analysis of input currents can show different kind of electrical and
mechanical failure [2,3,4]. Spectra are computed by ordinary Fast Fourier
Transform algorithms, and failure spectrum lines are identified by means of
C-programs implemented as suitable virtual LabVIEW instruments. The resulting

V-2

data can be stored in order to outline time-trends of system status and, if the
existence of anomalous conditions is suspected, processed by diagnostic
algorithms, both conventional and employing AI techniques.
These methodologies have a general validity, but in the following sections we
refer to induction motors, because specific techniques for this kind of power
devices were already developed.
An “optimum” maintenance scheduling leads obviously to additional cost of the
instrumentation required, along with the additional operator time. In order to
decrease the cost/benefit ratio, one strategy is to pursue a reduction of training
and monitoring times of the diagnostic tool operator. The diagnostic equipment
should, therefore, be designed to ease the interaction between man and
instrumentation. The use of graphical interfaces between software and hardware
allows a more intuitive approach to diagnostic operation.
The main features of the system are: multi-diagnosis facility on different systems
simultaneously as well, automatic or man-driven diagnostic process and trend
analysis. All the procedure is based upon the identification of anomalous
spectrum lines in the input currents according to the CSA method (Current
Signature Analysis). The results of FFT computation are then stored in a database
and can be easily retrieved for visualization. Some instrument front panels are
reported, in order to show the features of the diagnostic system.

3 Basic scheme for a multi-diagnosis instrument

The basic virtual instrument designed for machine diagnostics has the
architecture schematised in Fig. 54.

System

High frequency F.F.T. Slip computation

"Failure Set"F.F.T.

Fault classification

Acquisition

Low frequency
Acquisition

Fault severity
evaluation

Fig. 54: Sub-instrument global scheme.

Two acquisitions of the instantaneous currents over different time intervals and
with different sampling rates are performed. The former is devoted to slip

V-3

computation, while the latter provides the data that are stored for further
diagnostic functions.

3.1 A. Slip computation

Two methods are selectable to perform slip computation, starting from DFT
analysis of the stator current signal: one based on slot spectral components [1]
and one based on rotor electrical dissymmetry components [5]. There are, of
course, two different virtual instruments devoted to the computation procedure.
Their front panel (Fig. 55 and Fig. 56) are referred to a 1700kW three-phase
machine with 3 pole pairs and 74 rotor slots. Both techniques give almost the
same slip value: 0.0059.

Fig. 55: Slip measurement by the slot harmonics technique (front panel).

Fig. 56: Slip measurement by the fault frequencies technique (front panel).

V-4

3.2 B. Failure set

The failure set formulation can be done in different ways, all reflecting the
Minimum Configuration Artificial Intelligence (MCAI) [6].
The task is to filter spectral components, to eliminate those components that
provide no useful failure information and to perform a components selection,
searching the spectrum components which characterize the fault under test. The
function is performed by a "C" program implemented in a virtual instrument and
it ends building a vector of considered components, named “Failure Set” (FS)
[7,8,9] for the motor currently under test.
This diagnostic system is FC-FSM compliant (Fault Classification – Fault
Specification Method) [6,10]. The diagnostic session, in fact, has two steps: first,
classification of the fault and second, evaluation of the fault severity.

3.3 C. Fault classification

This identification process is done by an expert system inferential engine,
implemented as a "C"-program in a suitable virtual instrument. The expert
system, having at disposal the FS, databases containing machine operating
conditions and machine history in term of trend of well stated failure
components, is able to classify a fault occurrence [4,11].
Selectable procedures are: threshold analysis or neural network (NN) technique
(if NN previously trained). These techniques are embedded in C-program under
virtual instruments.
According to the selected procedure the expert engine activates, for example, an
unsupervised NN based classification method.
If a FS containing current spectrum lines related to the machine situation is
presented, the unsupervised NN clusters the FS into the characteristic region of
the output node lattice, realizing a fault topographic map that can be also utilized
immediately by visual inspection. As an example, Fig. 57 reports the fault map
trained by rotor dissymetries (1), stator dissymetries (2) and bearing damages (3)
together with healthy machine cases (H) [4,6,11] for a three-phase 0.45 kW test
motor.

V-5

Fig. 57: Fault map example to distinguish stator, rotor and bearing damages.

If threshold analysis is selected, the expert engine starts this method to verify
whether the diagnostic indicator for that FS is over the threshold. The attention
threshold can be derived by analysing the diagnostic indicator trend. Fig. 58
reports a typical example related to a 900kW machine under test for a long time.
The trend of the diagnostic indicator (that is, the sum of the two fault components
at the frequencies (1±2s)f in percentage with the fault component at the supply
frequency [6,10]). It shows that a bar get effectively broken at the 50th
monitoring test of the figure. It is also easy to state that in this case can be
assumed an attention threshold of 0.5%.
If the FS is ambiguous, these methods can not decide on the fault classification.

Fig. 58: Trend of the input current sideband sum of a 900kW 6kV 8 pole

induction machine.

V-6

3.4 D. Fault severity evaluation

The last step is evaluating the fault severity. This evaluation is done starting from
motor operating conditions, motor characteristics, trend, and threshold value for
faults, by using conventional methods or AI techniques [10,14,15,16,17,18,19].
The selection of different specific methods is programmable in the diagnostic
session editor.
Each diagnostic session can involve three type of faults (on stators, rotors or
bearings). Depending on the result of the classification step, the system assumes
that a particular failure is probably occurred and invokes the specific diagnostic
method for that kind of fault (or, if none occurred, states the correct operating
condition to the operator). If the FS is ambiguous, instead, it asks for an operator
action, which can decide on the fault severity by visual inspection of the data
shown by various available front panels related to the justification features.
This kernel is used by several virtual instruments integrated on a programmable
diagnostic system, that is, the operator is allowed to define a diagnostic session
through some configuration panels. As an example we show in Fig. 59 a panel
related to a rotor faults diagnostic session. The machine under test is the usual
three-phase 0.45 kW test motor with one pole pair in faulty condition (two
broken bars). The front panel has (software) led indicator to highlight the
diagnosis result and a label for the selected specific method. In the case reported
below “fuzzy” is the indication of the used method. By clicking the “Details”
key, an other front panel is activated, which explains more detailed information
about the diagnosis result: each one of the possible situations, that are NO
FAULT, INCIPIENT FAULT, ONE BROKEN BAR, TWO BROKEN BARS,
TWO OR MORE BROKEN BARS, is characterized by a degree of membership,
which is evidenced by bar indicators [1].

Fig. 59: Rotor fault diagnosis result front panel.

V-7

4 Multi-device monitoring features

Limited to the acquiring board capabilities, it is also possible to use up to eight
channels for data acquisition, specifying acquiring process and test device for
each of them.
The independence of the data channels allows to program the diagnostic session
in two basic way:

• the same diagnostic on up to eight different motors (if the diagnostic needs
only a data stream, of course);

• different diagnostics on a single motor (in the heaviest case six data streams
are needed: three currents and three voltages), that is, the system reads all
needed data and through the previously outlined process, it individuates the
fault and activates the appropriate diagnostic.

It is also possible:
• to perform a manual diagnostic session;
• or to automate it to minimize operator action: it is possible to repeat the

programmed set of diagnostics (on several and different devices as well) a
fixed number of times during a definite period, without man operations;

• to record the diagnostic session data on a database (that can be visualised at
any time) to add new information for further trend analysis.

Several front panel get the operator able to define the various features of the
diagnostic system. As an example we report in Fig. 60 and Fig. 61 the front
panels for the channel function definition and for motor parameter definition.

Fig. 60: Configuration panel for diagnostic session.

V-8

Fig. 61: Configuration panel for motor description.

5 Conclusions

In this chapter, a diagnostic tool for induction machine monitoring, realised by
means of the software package LabVIEW, has been presented. The acquisition
hardware is controlled by virtual instruments, VIs, that is, images displayed on a
personal computer monitor, closely resembling real-world instruments. The front
panels of the VIs are designed in order to provide trained operators with an
immediate insight of machine conditions, while threshold-controlled alarm
system are employed to alert un-expertised personnel.
The tendency of the machine toward fault conditions can be pointed out by
means of an other sub-panel of the VI, designed to display data recorded in a
data-base. Operators are, therefore, enabled to track trends and plan maintenance
operations to be performed ahead of machine failure.
The proposed diagnostic system is programmable and devoted to the monitoring
of different devices and it is realized as hierarchical and modular structure. For
these reasons it seems very suitable to be completed with diagnostic modules
based on Symbolic Calculus [Chapter III] to enhance its flexibility.
Besides, graphic programming tools can greatly ease man/machine interaction in
induction machine condition monitoring, allowing un-expertised personnel to
perform routine checks of machine status. Hence, the cost/benefit ratio of the
diagnostic procedure can be, on the whole, significantly reduced.

6 References

[1] A. Cavallini, F. Filippetti, G. Franceschini, S. Pirani, C. Tassoni. A
GLOBAL INSTRUMENT FOR ON-LINE INDUCTION MOTOR
INTEGRITY ASSESSMENT. Stockholm Power Tech, Stockholm
Sweden June 1995.

V-9

[2] J.R. Cameron, W.T. Thomson, A.B. Dow: ON-LINE CURRENT
MONITORING OF INDUCTION MOTORS, IEE-EMD Conf., N.282,
1987.

[3] J.B. Kliman, J. Stain: METHODS OF MOTOR CURRENT
SIGNATURE ANALYSIS. Electric Machines and Power Systems, N.20,
1992.

[4] R.R. Schoen, T.G. Habetler, B.K. Lin, J.H. Schlag, S. Farag: AN
UNSUPERVISED ON-LINE SYSTEM FOR INDUCTION MOTOR
FAULT DETECTION USING STATOR CURRENT MONITORING.
IEEE-IAS'94, October 94, Denver.

[5] L. Collamati, F. Filippetti, G. Franceschini, C. Tassoni. A TECHNIQUE
FOR INDUCTION MACHINE SPEED DETECTION BASED ON
ROTOR ELECTRICAL ASYMMETRY FREQUENCIES
IDENTIFICATION. IEEE Conf.on Harmonics and quality of power
ICHQP’96, Las Vegas October 1996.

[6] F. Filippetti, G. Franceschini, C. Tassoni, P. Vas: INTEGRATED
CONDITION MONITORING AND DIAGNOSIS OF ELECTRICAL
MACHINES USING MINIMUM CONFIGURATION. Int. Eur. Conf.
EPE'97, Trondhaim, Norway, September 1997.

[7] F. Filippetti, G. Franceschini, M. Martelli, C. Tassoni: AN APPROACH
TO KNOWLEDGE REPRESENTATION ABOUT INDUCTION
MACHINE DIAGNOSTICS IN EXPERT SYSTEMS. Proc. of ICEM'88
Conference, September 1988, Pisa, Italy.

[8] D. Leith, N.D. Deans, L.I.D. Stewart: CONDITION MONITORING OF
ELECTRICAL MACHINE USING REAL TIME EXPERT SYSTEMS.
Proc. of ICEM'88 Conference, September 1988 Pisa Italy.

[9] P. Calonnec, T. Derrey, E. Destobbeler, L. Protin: INDUCTION MOTOR
RELIABILITY USE OF FAULT TREE. EPE'95, September 1995,
Sevilla, Spain.

[10] F. Filippetti, G. Franceschini, C. Tassoni, P. Vas: A.I. TECHNIQUES IN
INDUCTION MACHINES DIAGNOSIS CONSIDERING SPEED
RIPPLE EFFECT. IEEE- Trans. on I.A., Jan. 1998

[11] J. Penman, C.M. Yin: FEASIBILITY OF USING UNSUPERVISED
LEARNING NN FOR THE CONDITION MONITORING OF
ELECTRICAL MACHINES. IEE Proc. Electr. Power Appl., Vol. 141 (6)
1994.

[12] J.H. Schlang, T.G. Habetler, B.K. Lin. AN UNSUPERVISED NEURAL
NETWORK FAULT DISCRIMINATING SYSTEM
IMPLEMENTATION FOR ON LINE CONDITION MONITORING OF
INDUCTION MACHINE USING STATOR CURRENT. Int. Symp.
SDEMPED'97, Carry le Rouet France September 1997.

[13] F. Filippetti, G. Franceschini, C. Tassoni, P. Vas: TRANSIENT
MODELLING ORIENTED TO DIAGNOSTICS OF INDUCTION
MACHINE WITH ROTOR ASYMMETRY. Proc. of ICEM’94, Paris,
Sept. 1994.

V-10

[14] G. Gentile, N. Rotondale, F. Filippetti, G. Franceschini, M.Martelli, C.
Tassoni: ANALYSIS APPROACH OF INDUCTION MOTOR STATOR
FAULTS TO ON-LINE DIAGNOSTICS. ICEM’90, Cambridge,
Massachusetts, Ag.90.

[15] R. R. Schoen, T.G. Habetler, F. Kamran, R. G. Bartheld: MOTOR
BEARING DAMAGE DETECTION USING STATOR CURRENT
MONITORING. IEEE-IAS'94, October 94, Denver, Colorado.

[16] E. Ritchie, Xiaolan Deng, T. Jokinen: DIAGNOSIS OF ROTOR
FAULTS IN SQUIRREL CAGE INDUCTION MOTORS USING A
FUZZY LOGIC APPROACH. Proc. of Int. Conf. ICEM'94, September
1994, Paris

[17] F. Filippetti, G. Franceschini, C. Tassoni, P. Vas: A FUZZY LOGIC
APPROACH TO ON-LINE INDUCTION MOTOR DIAGNOSTICS
BASED ON STATOR CURRENT MONITORING. Stockholm Power
Tech, June 1995, Stockholm, Sweden.

[18] K. R. Cho, J. H. Lang, S. D. Umans: DETECTION OF BROKEN
ROTOR BARS IN INDUCTION MOTORS USING STATE AND
PARAMETER ESTIMATION. IEEE-IAS’89, San Diego, California, Oct.
1989.

[19] F. Filippetti, G. Franceschini, C. Tassoni, NEURAL NETWORKS
AIDED ON-LINE DIAGNOSTICS OF INDUCTION MOTOR ROTOR
FAULTS. IEEE Transactions on Industry Applications Society, IEEE
Publisher, July/August 1995

Index-1

Index

Foreword..F-2
This work ...F-2

1 Aim of the work ..F-2
2 Structure of the work...F-2

2.1 Chapter I ..F-2
2.2 Chapter II ...F-2

2.2.1 Part One ..F-2
2.2.2 Part Two..F-2

2.3 Chapter III..F-2
2.3.1 Part One ..F-2
2.3.2 Part Two..F-2

2.4 Chapter IV ...F-2
2.4.1 Part One ..F-2
2.4.2 Part Two..F-2

2.5 Chapter V...F-3
2.6 Conclusions and references..F-3

Chapter I ...I-1
Goals and views ..I-1

1 Symbolic calculus ..I-1
2 Goals..I-2
3 Problems ..I-2
4 Solutions ..I-4

4.1 Decreasing the number of symbols ...I-4
4.2 Symbolic approximation of expressions ...I-4
4.3 Functional/mathematical disaggregating of the circuit..........................I-4
4.4 Spreading a single expression over a sub-sequence of shorter
expressions..I-5

5 State-of-the-art ...I-5
6 Synthesis prospect..I-6
7 References..I-7

Chapter II .. II-1
The old Inhibition Method as new symbolic processor..................................... II-1

Index-2

1 Part One - Formulation ..II-1
1.1 Brief history and overview of the method... II-1
1.2 Weakness and strength.. II-3
1.3 An introductory example... II-4
1.4 Anonymous (symbolic) formulation ... II-6

1.4.1 Inhibition sequence tableau.. II-9
1.4.2 ICS operator... II-9
1.4.3 Inhibition theorem.. II-10

1.4.3.1 ProofII... II-10
1.4.3.2 Goal... II-11

1.4.4 Fundamental formula ... II-11
1.4.5 Topological rule... II-11
1.4.6 Solving mono-supply regimes.. II-13
1.4.7 Solving multi-supply regimes... II-13
1.4.8 Flexibility... II-13

1.4.8.1 Change of supply... II-14
1.4.8.2 Inverse matrix calculation ... II-14

1.5 Example .. II-15
1.6 Conclusions for Part One .. II-16
1.7 References to Part One.. II-16

2 Part Two - Implementation .. II-18
2.1 Kernel of the implementations .. II-18

2.1.1 Input matrix.. II-18
2.1.2 Recursive and iterative kernel.. II-20
2.1.3 Matrix kernel.. II-21

2.2 Implementations.. II-22
2.3 Circuit example... II-24
2.4 Conclusions for Part Two ... II-25
2.5 References to Part Two... II-25

Chapter III.. III-1
Reflection on circuit diagnostics.. III-1

1 Part One - Cycling Verify Method.. III-1
1.1 The basic idea ..III-1
1.2 Single fault diagnosis - Problem definition.. III-2

1.2.1 Definition .. III-2
1.2.2 Diagnosis .. III-3
1.2.3 Example .. III-4

1.3 Double fault diagnosis - Problem definition III-6
1.3.1 Definition .. III-6
1.3.2 Diagnosis .. III-6
1.3.3 Example .. III-7

1.4 Multiple fault ... III-9
1.5 Interval algebra for real circuit tolerances ... III-9
1.6 Conclusions for Part One ... III-9
1.7 References to Part One... III-10

2 Part Two – Multifrequency testing.. III-12

Index-3

2.1 Introduction..III-12
2.2 Diagnostic procedure ... III-13
2.3 Example ...III-15
2.4 Conclusions for Part Two .. III-18
2.5 References to Part Two.. III-18

Chapter IV ...IV-1
Reflection on circuit analysis ...IV-1

1 Part One - A procedure for switching circuits...IV-1
1.1 Symbolic technique..IV-2
1.2 Proposed method ...IV-4
1.3 Advantages...IV-6
1.4 Resonant topologies...IV-9
1.5 The implementation of the proposed method...................................IV-12
1.6 Conclusions for Part One ...IV-12
1.7 References to Part One...IV-12

2 Part Two - A procedure for piece-wise linear circuitsIV-14
2.1 Introduction..IV-14
2.2 Symbolic approach...IV-14
2.3 Symbolic technique..IV-15
2.4 A practical example ...IV-16
2.5 Conclusions for Part Two ..IV-20
2.6 References to Part Two..IV-20

Chapter V..V-1
Virtual instruments..V-1

1 Introduction..V-1
2 Why a global intrument..V-1
3 Basic scheme for a multi-diagnosis instrument ..V-2

3.1 A. Slip computation ..V-3
3.2 B. Failure set...V-4
3.3 C. Fault classification..V-4
3.4 D. Fault severity evaluation ..V-6

4 Multi-device monitoring features...V-7
5 Conclusions..V-8
6 References..V-8

Index ... Index-1

