Research

 

Disciplinary area: ELECTROTECHNICS


ELECTROMAGNETIC COMPATIBILITY

Research topics

Electromagnetic interferences produced by static converters
(U. Reggiani, G. Grandi, D. Casadei, I. Montanari)

Objectives: Development of a model for predicting effects of power converter parasitic components on conducted electromagnetic interferences and application to an inverter-fed ac motor.

The research concerns a model for a switching cell that is the basic structure of most power converters. The proposed equivalent circuit takes into account parasitic parameters (inductances and capacitances) and emphasizes their different influence on both differential- and common-mode components of the conducted emission produced by the switching cell. The model, which can be used in the time and frequency domain, was validated experimentally.

This model together with the high-frequency model proposed for windings of an ac motor (see research “High-frequency circuit modelling for wound components”) allows one to predict conducted interferences in inverted-fed ac motors, at both input and output sides of the inverter. The overall circuit model was verified by experimental tests carried out on a prototype of an ac motor drive.

Modelling and optimal design of multilayered shielding structures for magnetic fields
(U. Reggiani, L. Sandrolini, A. Massarini)

Objectives: Development of a methodology for the design and optimization of multilayered shields for magnetic fields

An analytical model for the calculation of the shielding effectiveness of magnetic multilayered shields has been developed.  Planar and cylindrical shields in a source of rectilinear and circular sinusoidal currents have been considered.  The shielding properties of every shield layer are taken into account by means of a matrix that can be built by grouping transfer relations between continuous components of the magnetic field at the two interfaces of the same layer.  Such components are obtained by solving the magnetic diffusion equation in the domain of interest through appropriate series expansions or transforms.  In such a way, a transfer function that represents the shield in the spectral domain of the series expansion or transform is obtained. The transfer function allows one to derive the field components  in the shielded region from those in the source region.  The methodology is applicable in the frequency range in which the quasi-stationary approximation holds.  Non sinusoidal currents can also be taken into account with the methodology.  An aspect of the research concerns the optimization, by means of heuristic and nonlinear programming algorithms, of the number and thickness of the layers that provide the desired shielding effectiveness with the minimum total thickness of the shield, composed of materials with known physical characteristics.  

Radiated disturbances from switching converters
(U. Reggiani, L. Sandrolini, G. L. Giuliattini Burbui, A. Massarini)  

Objectives: Development of models for predicting radiated electromagnetic field

The research concerns the development of models to predict the radiated electromagnetic field from switching converters  built on a printed circuit board (PCB) and from a couple of straight parallel interconnecting conductors that carry high-frequency currents.  The equivalent lumped circuit of the PCB strips is obtained by assembling  lumped-Pi, -L and -T circuits appropriately. The strip currents and their spectral content are determined with a circuit simulator.  The magnetic and electrical components of the near field are calculated by representing the strips with the Hertzian dipole model.  The results are compared with those obtained from numerical codes and from experimental measurements.

The straight interconnecting conductors carry high-frequency currents (sinusoidal and periodic nonsinusoidal) and are modeled as two Hertzian dipoles and as a chain of short electrical dipoles.  Configurations of two parallel cables  at various distances from a ground plane have been considered.  The radiated field is calculated and measured in the far field region. This last activity has been carried out in collaboration with researchers of the Electromagnetics Research Group of the University of Nottingham, United Kingdom.

Study of compact cells for electromagnetic compatibility testing
(U. 
Reggiani, L. Sandrolini, G. L. Giuliattini Burbui, A. Massarini)

Objectives: Analysis of design solutions for compact cells for pre-compliance electromagnetic compatibility testing.

The research concerns the study of possible design solutions of compact cells  for pre-compliance electromagnetic compatibility testing.  In particular, GTEM cells with transverse cross sections other than the rectangular one have been considered in order to obtain a more uniform electric field distribution inside the cell volume.  Cubical cells in which the electromagnetic field is radiated from a broadband antenna are also curremtly studied.

Metodi innovativi per il calcolo e la misura dei campi magnetici a bassa frequenza
(G. Grandi, M. Landini)

L'attività in questo settore ha portato alla definizione di una procedura di calcolo mediante la quale è possibile esprimere immediatamente il valore efficace dell’induzione magnetica in funzione della geometria di un elettrodotto (spaziatura media tra i conduttori), della corrente di esercizio, e della distanza dal punto considerato alla linea. Tale procedura, basata sull’applicazione della teoria delle sequenze ai vettori che descrivono la posizione dei conduttori di fase rispetto al loro baricentro, consente di calcolare esattamente l’andamento asintotico del campo magnetico. E' stato mostrato che i valori calcolati rappresentano quelli effettivi con un errore inferiore al 10%, già per distanze superiori a circa due/tre volte la spaziatura media tra i conduttori.

Un’ulteriore attività di ricerca ha riguardato lo studio di un particolare trasduttore di campo magnetico basato sull’impiego in catena chiusa di sensori magnetici (tipicamente dispositivi ad effetto Hall o magneto-resistivi). Il principio di funzionamento, del tutto simile a quello di alcuni trasduttori di corrente, è basato sull’annullamento del campo in corrispondenza del sensore mediante una bobina coassiale. La corrente che percorre la bobina è pilotata dal segnale in tensione fornito dal sensore stesso, opportunamente amplificato. In questo modo si realizza un sistema in retroazione in grado di inseguire l’andamento istantaneo del campo magnetico con un segnale in corrente ad esso proporzionale.
Il prototipo di trasduttore, realizzato presso il Laboratorio di “Compatibilità elettromagnetica" del D.I.E. (LEMC), ha consentito di validare sperimentalmente gli sviluppi analitici ed i calcoli previsionali.
Allo scopo di generare il necessario campo magnetico di riferimento a bassa frequenza, regolabile e calcolabile con piccola incertezza, è stata realizzata una doppia bobina di Helmoltz quadrata, con lato pari ad 1m, come previsto dalle normative tecniche per la taratura degli strumenti di misura. Sono state sviluppate alcune espressioni analitiche del campo magnetico grazie alle quali è stato possibile correlare con esattezza le incertezze geometriche a quelle del campo risultante nel centro della bobina. E’ inoltre stata studiata la distribuzione del campo in termini di uniformità, con la definizione di un volume di lavoro utile entro la quale il campo è determinato con un’incertezza inferiore all’1%.

Main publications

G. Grandi, I. Montanari, U.Reggiani “Effects of Power Converter Parasitic Components on Conducted EMI” Proceedings 12th International Zurich Symposium and Technical Exhibition on EMC (EMC '97), Zurich (CH), February 18-20, 1997, pp.499-504

G. Grandi, D. Casadei, U. Reggiani “Analysis of Common- and Differential-Mode HF Current Components in PWM Inverter-Fed AC Motors” Proceedings IEEE Power Electronics Specialist Conference (PESC’98), Fukuoka (Japan), May 17-22, 1998, Vol. 2, pp. 1146-1151

L. Sandrolini, A. Massarini, U. Reggiani “Transform Method for Low-Frequency Shielding Effectiveness Calculation of Planar Linear Mutilayered Shields” IEEE Trans. on Magnetics, Vol. 36, No. 6, November 2000, pp. 3910-3919

L. Sandrolini, A. Massarini, U. Reggiani “Magnetic Shielding of Long Wires with Multilayered Cylinders” Proceedings 4th Symposium on Electromagnetic Compatibility (EMC 2000), Brugge, September 11-15, 2000, pp. 263-267

L. Sandrolini, A. Massarini, U. Reggiani “Low-Frequency Multilayered Magnetic Shielding of Circular Loops” 14th International Zurich Symposium and Technical Exhibition on EMC (EMC 2001), Zurich (CH), February 20-22, 2001, pp.17-22

A. Massarini, U. Reggiani, L. Sandrolini “Optimization of Magnetic Multilayered Shields” Proceedings IEEE 2001 International Symposium on Electromagnetic Compatibility (EMC 2001), Montreal, Canada, August 13-17, 2001, Vol. 1, pp.161-166

A. Massarini, U. Reggiani, L. Sandrolini “Shielding Effectiveness of Multilayred Shields for Magnetic Field Nonsinusoidal Sources” Proceedings 3rd International Symposium on Electromagnetic Compatibility, May 21-24, 2002, Beijing, (China), pp.605-608

A. Massarini, U. Reggiani, L. Sandrolini “Frequency Dependence of Shieding Effectiveness of Multilayred Magnetic Shields” Proceedings 6th International Wroclaw Symposium and Exibition on Electromagnetic Compatibility” June 25-28, Wroclaw, (Poland), 2002, Part. 1, pp. 409-414

A. Massarini, U. Reggiani, L. Sandrolini “Multifrequency Optimization of Multilayered Shields” Proceedings 2002 IEEE International Symposium on Electromagnetic Compatibility (EMC 2002), Minneapolis, Minnesota (USA), Aug. 19-23, 2002, pp.134-139

U. Reggiani, A. Massarini, L. Sandrolini, M. Ciccotti, X. Liu, D.W.P. Thomas, C. Christopoulos, “Experimental verification of predicted electro-magnetic field radiated by straight connecting cables carrying high-frequency currents” Proceedings IEEE Bologna Power Tech 2003, Bologna (Italy), June 23-26 2003

G.L. Giuliattini Burbui, A. Massarini, U. Reggiani, L. SandroliniAnalysis of design solutions for a GTEM cell” Proceedings V International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology, St. Petersburg (Russia), September 16-19, 2003, pp.319-322

A. Massarini, U. Reggiani, L. Sandrolini “Radiated emissions from switching converters” Proceedings XIII International Conference on Electromagnetic Disturbances 2003, Bialystok (Poland), September 24-26 2003, pp. 1.4-1,1.4-6

G. Grandi, A. Santi: “Campi magnetici a bassa frequenza (50 Hz) in ambiente lavorativo. Gli uffici: individuazione, principali sorgenti e contromisure”, Le Giornate di Corvara, 7° Convegno di Igiene Industriale: Elettrosmog etc., Corvara (Italia), 21-23 marzo 2001

G. Grandi: “A Simple Method to Approximate the Magnetic Field in the Vicinity of Over­head Power Lines”, 5th IASTED International Conference on Power and Energy Sys­tems, PES 2001, Tampa, FL, (USA), November 19-22, 2001

G. Grandi, M. Landini: “A Magnetic Field Transducer Based on Closed-Loop Operation of Magnetic Sensors”, IEEE International Symposium on Industrial Electronics, IEEE-ISIE, L’Aquila (IT), July 8-11, 2002