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Problem formulation

Determine
which electrical power generators to commit
their production levels
to supply
forecasted short-term (24 –168 hours) demand
spinning reserve requirements
at minimum cost

thermal units: operating cost, history-dependent 
startup costs, discrete on/off decision, minimum 
up/down-time, ramping constraints, emission 
characteristics
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Problem formulation
Cost function
• Production cost 

• Start-up cost

2
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System constraints
• Load demand 

Unit constraints
• Generation limits
• Minimum up/down time
• Unit initial status



• The study period is divided 
into smaller time intervals of 
equal duration

• The load is assumed to be 
constant within each time 
period

• The typical duration that is 
considered for every division is 
one hour

• Transitions between 
commitment states (ON/OFF) 
of generating units are allowed 
only at the beginning of each 
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Relaxing global constraints (demand requirements) yields the 

following dual approach:

subject to
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The dual function is rearranged as

where, for unit i

Lagrangian relaxation
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Lagrangian relaxation

1) Assigned λλλλ and ui , pi is found by solving

Solution in two steps

subject to

min max
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2) Assigned pi , ui is found by means of a forward dynamic 

programming algorithm 

subject to
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Lagrangian relaxation

To find λλλλ, the following dual problem is solved 

L* is a lower bound on the optimal objective value of the primal

problem. 

Critical points:

1) how to solve the dual problem

2) how to compute a feasible solution



Solve the primal problem
(u fixed)

yes

Initialization of multipliers λλλλ

Solve the I de-coupled
minimization sub-problems

Evaluate the dual function L(λλλλ)

Is the dual solution 
feasible?

Heuristic 
procedure

no

Update multipliers λλλλ

Upper Bound

Lower Bound

until
(UB-LB)/LB < spec. value



Lagrangian relaxation

Initialization of λλλλ

Solve a continuous (uit ∈ [0, 1]) relaxed version of the primal problem
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Lagrangian relaxation

Solution of the Lagrangian Dual
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The subgradient g(λ) of L(λ) with respect to Lagrangian multipliers λ is a 
T-vector. The t-th element is

At iteration k, the bundle method accumulates multipliers λ1, ..., λk, 
subgradients g(λ1), ..., g(λk) and dual function values L(λ1), ..., L(λk) in a 
bundle < λk, g(λk), L(λk)>. With this bundle, L(λ) is upper approximated 
with the following cutting plane (CP) model



At iteration k
is the current point, i.e. the T-vector of λ values yielding the highest 
LB currently available
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Stabilized solution
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Bundle disaggregato



Lagrangian relaxation

The Heuristics

By solving the dual problem by a bundle method, without an extra
computational effort, a “convexified” solution of the original problem is also 
available. This solution is a matrix with the same dimensions of matrix u, 
whose elements ui,t∈[0,1] can be interpreted as the “probability” for unit i to 
be committed at period t.

Making use of this matrix, a heuristic procedure has been implemented trying 
to uncommit units that are not really needed.

Such a heuristic procedure results in significantly improving the overall 
performance of the algorithm.



1 10

0.97 

0.975 

0.98 

0.985 

0.99 

0.995 

ITERATIONS

p.u. 

Aggregate bundle method          

Disaggregate bundle method 
without preconditioning 
Disaggregate bundle method 
with preconditioning 

Lagrangian relaxation



1 10

1

1.02

1.04

1.06

1.08

1.1

ITERATIONS

p.u.

Aggregate bundle method

Disaggregate bundle method
without preconditioning

Disaggregate bundle method
with preconditioning

Lagrangian relaxation



se
ar

ch
 sp

ac
e

Neighbourhood search in TS

co
st

 fu
nc

tio
n 

va
lu

e

state

neighbourhood

initial solution

Tabu search



co
st

 fu
nc

tio
n 

va
lu

e

state

se
ar

ch
 sp

ac
e

Neighbourhood search in TS

Tabu search



co
st

 fu
nc

tio
n 

va
lu

e

state

se
ar

ch
 sp

ac
e

Neighbourhood search in TS

Tabu search



co
st

 fu
nc

tio
n 

va
lu

e

state

se
ar

ch
 sp

ac
e

Neighbourhood search in TS

Tabu search



Local search
• Partendo da soluzione 

iniziale;
• generate altre soluzioni;
• ottenute una dall’altra 

(neighbourhood);
• sempre migliori;
• termina quando non sono 

più possibili 
miglioramenti.
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Tabu Search
• Sceglie sempre la soluzione 

di costo inferiore;
• anche se peggiorante.

Tabu List - TL
• Proibisce le mosse più 

recenti;
• memorizzando alcune 

informazioni.
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Tabu search

1. find an initial feasible solution x;
x* := x;
counter := 0; did_not_improve := 0;
do

counter ++; did_not_improve ++;

2. x’ := best non-tabu solution in the neighbourhood of x;
if cost(x’) < cost(x*) then

x* := x’;
did_not_improve := 0

endif ;
x := x’
while (counter ≤ max_counter) and 

(did_not_improve ≤ max_not_improve)



The reference case is a 10-unit 24-hour UC problem, whose parameters 
of the cost functions  are published in

V. Petridis, S. Kazarlis and A. Bakirtzis, “Varying Fitness Functions in Genetic 
Algorithm Constrained Optimization: The
Cutting Stock and Unit Commitment Problems”, IEEE Trans. on Systems, Man and 
Cybernetics, Part B: Cybernetics, Vol. 28, No. 5, October 1998.

The other ten UC test cases are generated from the reference with the 
aim to assess the influence of the various parameters of the problem on 
the behavior of the two different approaches.
Cases 2 and 3 are used to show the influence of the number of units
Cases 4 to 7 the influence of the size of the units
Cases 8 to 11 the influence of different demand profiles.
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Numerical results
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Numerical results

a good behavior of both approaches in finding approximate 
solutions for the UC;

comparable difficulties of the algorithms with respect to the 
various instances;

the percentage gap for the instances with 50 units is typically 
smaller than the one for 10 units;

as expected, Case 8 corresponding to an augmented demand 
profile turns out to be more costly and difficult of the reference 
case (instance 1). Case 9 is even more difficult, but less costly.

the quality of the solution obtained by the implemented 
Lagrangian relaxation seems not to be influenced by the number 
of units.

These computational results show:



1. In this paper, a Lagrangian relaxation algorithm for the solution of 
UC problems has been illustrated, wherein the dual problem solution 
is achieved through the implementation of an improved bundle 
method and the feasible solution for the primal problem is computed 
by a heuristic procedure that exploits available hints given by the 
bundle algorithm. The results obtained by the LR algorithm are 
compared with those obtained by a Tabu Search algorithm.

2. This comparison has shown a good behaviour of both approaches in
finding approximate solutions. Moreover, the analysis of the different 
and complementary characteristics of the two approaches suggests
further research activity to obtain an integrated algorithm of them, 
able to provide adequate solutions of the new UC problems peculiar 
of competitive electricity markets.

Conclusions


