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Introduction

Which are the main factors that may affect waveshape
and intensity of lightning-induced voltages?

 Waveshape of lightning current (1, dl/dt)
» Position of stroke location

* Ground (soil) resistivity

* Line construction

 Shielding wire (pole grounding)

« Presence of surge arresters

« Learder-induction effects

« Channel tortuosity and inclination

« Corona
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Using the Rusck simplified 100 ¥
formula :
| h |
— Mmax
Umax — ZO o 0% %\

d \ —a— Ungrounded Circuit
Whel‘e —&— Circuit with a Grounded
\ Neutral or Shield Wire
1+
Zo=1A4r\pu,l e, =30 5

which applies to infinitely long
lines above perfectly
conducting ground
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From: “IEEE Guide for Improving the Lightning
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Note that even the “simple” case of an infinitely long line
above a perfectly conducting ground has been the
object of several discussions on which models are the
most adequate for the calculation of the induced
voltages (see Nucci et al., 1995a, 1995b for a survey).

Seealsoat http://www.pti-us.com/pti/
“Lightning induced overvoltages”, slide presentation

by C.A. Nucci and F. Rachidi given at the Panel Session
“Distribution Lightning Protection”, IEEE T&D, New
Orleans, 1999.

--------- - - .- ----




Introduction Cont.

The avallability of a computer code for the
calculation of lightning-induced disturbances on
more relistic configurations of transmission lines

IS of Interest for solving problems of
* Power quality

» Electromagnetic compatibility (EMC)
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Three research groups of three different Universities

« Bologna (Faculty of Engineering, Dept. of Electrical
Engineering)

« Lausanne (Swiss Federal Institute of Technology, Power
Network Laboratory)

« Rome (Faculty of Engineering, Dept. of Electrical
Engineering)

Started some years ago a program aimed at developing a
computer code for the calculation of lightning-induced
voltages on realistic line configurations using the most
adequate models. mmmm) the LIOV code.



Introduction Cont.

Based on previous studies on the subject (see References) and
experimental data obtained by several researchers in the world

 Brasil (University of Sao Paulo)

« Colombia (National University of Colombia)

* France (St. Privat d’Allier)

« Japan (Criepi, University of Tokyo)

* Mexico (IEE)

* Norway (University of Trondheim)

« South Africa (Escom, NEERI)

- Sweden (Royal Institute of Technology, University of
Uppsala)

» United States (University of Florida)
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2. Theoretical basis of the LIOV code

Return-Stroke Current

i (0,t) ——

RSC

Lightning ElectroMagnetic Pu

1 (z,t) ——

LEMP

ElectroMagnetic Coupling

E,.B ——

EMC




Return Stroke Current Model

Transmission Line [Uman and McLain, 1969]

1(z,t)=1(0,t—2z/vVv)
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Transmission Line [Uman and McLain, 1969]

@ 1(z,t)=1(0,t—2z/vVv)
p
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Transmission Line [Uman and McLain, 1969]

@ 1(z,t)=1(0,t—2z/vVv)
A
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Transmission Line [Uman and McLain, 1969]

@ 1(z,t)=1(0,t—2z/vVv)

J[ W
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Transmission Line [Uman and McLain, 1969]

@ 1(z,t)=1(0,t—2z/vVv)

k )
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Travelling Current Source [Heidler, 1985]
1(z,t)=1(0,t+z/c)

@ Modified TL  [Nucci, Mazzetti, Rachidi, lanoz, 1988]

1(z,t)=1(0,t—2z/ V)e(—z/,z)

A =1-3km

DU [Diendorfer and Uman, 1990]
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A review of the various return-stroke models has been
recently made by Rakov and Uman on

IEEE EMC Transactions, Special Issue on Lightning,

1998 where they have discussed, among others, the
following ‘engineering’ models

e Bruce-Golde (BG)

Transmission Line (TL) Uman, McLain, Krider

Traveling Current Source (TCS) Heidler

Modified Transm. Line - Linear (MTLL) Rakov and Dulzon
Modified Transm. Line - Exponential (MTLE) Nucci et al.

Diendorfer-Uman (DU)
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Experimental validation

Given a channel-base current ==>
the RSC model must reproduce the
corresponding Electromagnetic field

For Natural lightning:

PROBLEM: practically no existing data sets of
simultaneously measured current and fields

Data of this kind have been collected using
the Triggered lightning technique
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m TRIGGERED LIGHTNING:
Lightning is artificially
Initiated firing small rockets
trailing grounded wires
upward a few hundred | o
meters under Mur
thunderstorms. -l

- g —

Validation by means of triggered lightning
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Validation by means of triggered lightning  Cont'd



Return-stroke current model Cont.
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Camp Blanding experiments, 1999.
Courtesy of M.A. Uman



Return Stroke Current Model
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Summary of statistics on the absolute error of the model peak fields on the basis
of triggerd ligthning simultaneously measured currents, velocities and fields
(subsequent return strokes)
adapted from Thottappillil and Uman [1993].

Abs. Ermor  =|(Ecyy - Emeas)! Emeas|
TL MTL TCS DU MDU
Mean 0.17 0.16 0.43 0.23 0.21
St.Dev. 0.12 0.11 0.22 020 0.19
Min. 0.00 0.00 0.14 0.00 0.02
Max. 0.51 0.45 0.84 0.63 0.60

Validation by means of triggered lightning  Cont’d



LEMP Model

Observation point
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Vertical Electric Field: can be calculated
assuming the ground as
Transverse Magnetic field: perfectly conducting

M.A. Uman, D.K. McLain, E.P. Krider
"The electromagnetic radiation from a finite antenna”,
Am. J. of Physics, Vol. 43, pp. 33-38, 1975.
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B dz’ 2(2 . 21)2 . r2 t —— - o -
dE, (r.¢,2,t) = 4%[ o _(‘)?'_(_le:_R_/_czﬂr+
22y L ¢ AR
(z',t—R/c)—-
CR4 :-E _______ ) : C2R3| d I ]

Vertical Electric Field

dB, (r,¢,z,t) =

Transverse Magnetic field
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———————————————

dE (1,4, 2,1) =

472'8 o =~ S _____________

3f<z-2>.'(;"{:a/e5'+
CR*  -r--mo------S

r(z—z)d(z t—R/C) ]

c’R® ! a |

€, permittivity of the free space
c speed of light

Horizontal electric field ... however
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... ground resistivity has to be taken into account =>
=> more complex approaches are needed

Ci,
+o,/joe,

Er (r’Z1 Ja)) — Erp (r’21 JC()) _H¢p(r101 JC()) \/5
g

Ergr Mg relative permittivity and permeability of ground

| = (r,z, jw) ﬂ¢p (r,0, jo) Fourier-transforms of E(r,z,t) and of H(r,0,t)
both calculated assuming a perfectly
conducting ground

Cooray-Rubinstein expression - Correction by Wait
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-8 P Zeddam and Degauque [1990]
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Adapted by Rachidi et al, r = 1500 m
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Three coupling models have been used so far:
« Rusck [1958]

e Chowdhuri-Gross [1969]

 Agrawal et al. [1980]

Of the three models, the Agrawal one Is
considered the most adequate for a general
external field excitation

However, for a lightning channel perpendicular to
the ground plane ===> Rusck = Agrawal



Coupling Model
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ou” (x,t) N oi(x,t)

- E'(x,ht
OX ot g )
ol(X,t) C ou”(Xx,t) _0
OX ot

u®(x,t) +u'(x,t) = u(x,t)

Transmission line Coupling equations by Agrawal et al.
(single-wire, perfectly conducting ground)
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00 L i(x+dx)
9_)_{'YY\ o
A _"'*' > A
u® (x) C'dx —=— u®(x+dx)
O— O
0 X i X+dX L
u'(x)

Agrawal et al.



Coupling Model CONTROLLO RETICOLO

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

éa u®(x,t) N I(xt) _ E' (x,h,t) u®(0,t) = -R.i(0,t) —u'(0,t) = —R.i(0,t) +jE;(O,z,t)dz

O X ot

N | ho
2i(xt) AUt _ LutLY =RILD UL =RLE) + j E!(L,z,t)dz
Ox ot o o
Equations Boundary conditions

Point-Centered Finite-Difference Method

e
Ly b Wmax-1 Ukmax
X0 X X0 X
i b h ) lkmax-2 kmaxlmax
0
h EzM R R HEZ,L
y i
, M Ax: spatial-integration step
At: time-integration step

xo J/////)) L



Coupling Model CONTROLLO RETICOLO
oot

up,-up | ip—irt usp vusy LU =us{(k — 1)Ax,nAt)
oA o ° {0 =if(k —0.5)A%,(n +0.5)At)
In— _In_— un_un— |
o tC— =0 | usy =E.{(k-0.5)ax,(n+0.5)at}

k'and n denote space and time increments
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k+1] U1 [ ’
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Coupling Model

Cont.

Internal nodes:

in—l _ in—l
n _ n-1 k k-1
p = Ag AU -

1 with .
n USI? +US|?_ _U,?H—UE in-1 = £ A
N Y SR

Boundary nodes:

< T "
|g:% u{‘zh-Ego—Rg‘wg‘
n n SN .
IE _ 3|Kmax_1 IKmax_Z u}i‘max —h- E; + R[‘ |2max
max 2 Kmax
Initial conditions (t=0):
i, =0k =041,...,k

max

u, =0k =01,...,k

max
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Reduced scale model at the University Of Sao Paulo - Brazil



Coupling Model
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Cont.

OBSERVATION POINT

Experimental data: courtesy of Dr. A. Piantini, Univ. Of S&o Paulo

100 m



Coupling Model

Usmg NEMP S|mulators (SEMIRAI\/IIS EPFL, Lausanne)
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Comparison with Experimental Results
(Line matched at A, B, C)

Using NEMP simulators
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Coupling Model

dV/dt in kV/us
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