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Introduction

Which are the main factors that may affect waveshape
and intensity of lightning-induced voltages?

• Waveshape of lightning current (Ipeak, dI/dt)
• Position of stroke location
• Ground (soil) resistivity
• Line construction
• Shielding wire (pole grounding)
• Presence of surge arresters
• Learder-induction effects
• Channel tortuosity and inclination
• Corona
• …
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From:  “IEEE Guide for Improving the Lightning 
Performance of Electric Power Overhead 

Distribution Lines”, 1997.

d
hIZU max

max 0=

Using the Rusck simplified 
formula

Ω== 30/4/1 00 oZ εµπ
where

which applies to infinitely long 
lines above perfectly 
conducting ground
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Note that even the “simple” case of an infinitely long line 
above a perfectly conducting ground has been the 
object of several discussions on which models are the 
most adequate for the calculation of the induced 
voltages (see Nucci et al., 1995a, 1995b for a survey).

See also at http://www.pti-us.com/pti/
“Lightning induced overvoltages”, slide presentation
by C.A. Nucci and F. Rachidi given at the  Panel Session
“Distribution Lightning Protection”, IEEE T&D, New 
Orleans, 1999.
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The availability of a computer code for the 
calculation of lightning-induced disturbances on 
more relistic configurations of transmission lines 

is of interest for solving problems of

• Power quality

• Electromagnetic compatibility (EMC)  
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Distribution line
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Three research groups of three different Universities 

• Bologna (Faculty of Engineering, Dept. of Electrical
Engineering)

• Lausanne (Swiss Federal Institute of Technology, Power 
Network Laboratory)

• Rome (Faculty of Engineering, Dept. of Electrical 
Engineering)

Started some years ago a program aimed at developing a 
computer code for the calculation of lightning-induced 
voltages on realistic line configurations using the most
adequate models.               the LIOV code.  
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Based on previous studies on the subject (see References) and 
experimental data obtained by several researchers in the world

• Brasil (University of Sao Paulo)
• Colombia (National University of Colombia)
• France (St. Privat d’Allier)
• Japan (Criepi, University of Tokyo)
• Mexico (IEE)
• Norway (University of Trondheim)
• South Africa (Escom, NEERI)
• Sweden (Royal Institute of Technology, University of 

Uppsala) 
• United States (University of Florida)



Adapted from Barker et al. IEEE Trans. on PWDR, Vol. 11, pp. 980-995, 1996.  
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The Camp Blanding lightning triggering 
facility in Florida. 
(Courtesy of M.A. Uman).
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Figure 1 :Experimental station "Ilyapa " 

D.L.M.T.
D.L.M.T.

D.L.M.T: Direct Lightning Measurement Tower
I.M.: Induced Voltage Measurement points
T: Transformer

Layout of the experimental station “Ilyapa” in Colombia
(courtesy of H. Torres)
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2. Theoretical basis of the LIOV code             

i (0,t)

Return-Stroke Current

RSC i (z,t)

Lightning ElectroMagnetic Pulse

i (z,t) LEMP E, B

ElectroMagnetic Coupling

E, B EMC V, I



Return Stroke Current Model

Transmission Line [Uman and McLain, 1969]

v

z

i z t i t z v( , ) ( , / )= −0
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Transmission Line [Uman and McLain, 1969]
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Travelling Current Source [Heidler, 1985]

i z t i t z c( , ) ( , / )= +0z

Modified TL   [Nucci, Mazzetti, Rachidi, Ianoz, 1988]

i z t i t z v e z

km

( , ) ( , / ) ( / )= − −

= −

0
1 3

λ

λ

DU   [Diendorfer and Uman, 1990]
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A review of the various return-stroke models has been 
recently made by Rakov and Uman on 
IEEE EMC Transactions, Special Issue on Lightning, 
1998 where they have discussed, among others, the 
following ‘engineering’ models

• Bruce-Golde (BG)
• Transmission Line (TL) Uman, McLain, Krider
• Traveling Current Source (TCS) Heidler
• Modified Transm. Line - Linear (MTLL) Rakov and Dulzon
• Modified Transm. Line - Exponential (MTLE) Nucci et al. 
• Diendorfer-Uman (DU)
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Experimental validation
Given a channel-base current ==>
the RSC model must reproduce the 
corresponding Electromagnetic field

For Natural lightning:

PROBLEM: practically no existing data sets of 
simultaneously measured current and fields

Data of this kind have been collected using
the Triggered lightning technique
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TRIGGERED LIGHTNING: TRIGGERED LIGHTNING: 
LightningLightning isis artificiallyartificially
initiatedinitiated firingfiring smallsmall rocketsrockets
trailingtrailing groundedgrounded wireswires
upwardupward a few a few hundredhundred
metersmeters under under 
thunderstormsthunderstorms..

Validation by means of triggered lightning
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Validation by means of triggered lightning Cont’d
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Camp Blanding experiments, 1999.
Courtesy of M.A. Uman



Return Stroke Current Model             Cont.

TCS

microseconds microseconds

V
/m TCS MTL

Validation by means of triggered lightning Cont’d
Adapted by Thottappillil and Uman, 1993. 
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Summary of statistics on the absolute error of the model peak fields on the basis
of triggerd ligthning simultaneously measured currents, velocities and fields

(subsequent return strokes)
adapted from Thottappillil and Uman [1993].

Abs. Error  =⏐(Ecal - Emeas) / Emeas⏐

TL MTL TCS DU MDU

Mean 0.17 0.16 0.43 0.23 0.21
St.Dev. 0.12 0.11 0.22 020 0.19

Min. 0.00 0.00 0.14 0.00 0.02
Max. 0.51 0.45 0.84 0.63 0.60

Validation by means of triggered lightning Cont’d



LEMP Model
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Vertical Electric Field:

Transverse Magnetic field:

can be calculated
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assuming the ground as
perfectly conducting

M.A. Uman, D.K. McLain, E.P. Krider
"The electromagnetic radiation from a finite antenna", 
Am. J. of Physics, Vol. 43, pp. 33-38, 1975.
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Vertical Electric Field
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… ground resistivity has to be taken into account =>
=> more complex approaches are needed

ogrg

o
prpr j

cjrHjzrEjzrE
εωσε

µωωω φ
+

−= ),0,(),,(),,(

εrg, µrg relative permittivity and permeability of ground

),0,( ωφ jrH p Fourier-transforms of E(r,z,t) and of H(r,0,t) 
both calculated assuming a perfectly
conducting ground

),,( ωjzrE rp

Cooray-Rubinstein expression - Correction by Wait
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Adapted by Rachidi et al,  
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r = 1500 m
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Zeddam and Degauque [1990]
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Three coupling models have been used so far:

• Rusck [1958]

• Chowdhuri-Gross [1969]

• Agrawal et al. [1980]

Of the three models, the Agrawal one is
considered the most adequate for a general
external field excitation
However, for a lightning channel perpendicular to
the ground plane ===> Rusck =  Agrawal
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Incident field

Scattered field

TOTAL FIELD

• Transverse dimensions of the line < 10 x wavelength
• Line response: quasi TEM
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Point-Centered Finite-Difference Method
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∆x: spatial-integration step
∆t: time-integration step

Coupling Model  CONTROLLO RETICOLO        
Cont.
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Internal nodes: 
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Reduced scale model at the University Of São Paulo - Brazil
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Example of validation of the Agrawal coupling model

Experimental data: courtesy of Dr. A. Piantini, Univ. Of São Paulo
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Using NEMP simulators (SEMIRAMIS, EPFL, Lausanne)
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Using NEMP simulators

Adapted by Guerrieri et al., 19
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Using reduced-scale line model
Experimental data: by A. Piantini, Univ. Of São Paulo


