

Dipartimento di neria Elettrica

Dipartimento di Ingegneria Elettrica EPSL Dipartimento di Sistemi Flettrici e Automazione

REMARKS ON POWER SYSTEM RESTORATION IN OPEN ELECTRICITY MARKETS

S. Barsali, A. Borghetti, B. Delfino, G.B. Denegri R. Giglioli, M. Invernizzi, C.A. Nucci

System operator responsibility in power system

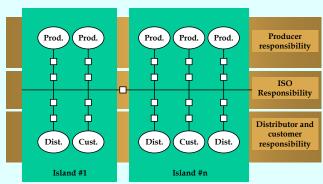
restoration in open electricity markets

Base knowledge for system restoration

- · Size and extension of the black-out zone
- · Amount of generation provided with black-start capability
- Location of generation provided with black-start capability
- · Amount, location and dynamic nature of

Qualification of generating

- Autonomous start up
- · No load performance
- · Connection energisation capability
- Cold load pick up response
- · Regulation facilities in isolated operation
- · Ramping rates versus power generation


Planning phase

- Oualification of operators for supplying different services
- · Definition of areas of influence of each operator
- Definition of contractual requirements
- Definition of supply priorities

Operational phase

- · Recognition of black-out extension
- · Breakers set up to arrange restoration islands
- Respect of contractual agreements by engaged operators
- · Build up of restoration islands
- · Interconnection of restored islands

Influence areas of operators

Contractual requirements

- Contracts ISO producers procuring black start capability
- Contracts ISO distributors on load availability
- Contracts ISO final users on expected time for recovery and related penalties

Power plants

Hydro power plants

- · Quick start with limited required
- · Flexible response to network contingencies
- · Insufficient dynamic characteristics of standard speed governor and fluid . Possibility of separate feeding of admission valves
- · Additional regulation channels required

Geothermal plants

- · Outstanding reliability and availability
- Improvement of unit emergency performance by advanced black start devices (SWVC)
- auxiliaries during frequency and voltage crises

Steam units

- · Black start up is a complex and dangerous procedure
- · Load rejection becomes a usual last
- · Interest on load islands creation close to generation plants
- · Need for combined configurations (e.g. repowering)

Cogeneration plants

- · Promising black start sources since located in industrial areas
- · Possible configuration for producers to provide restoration ancillary services
- · Concern about parallel black out effects on thermal and electric

Open cycle gas turbine

- · Reduced amount of the sized
- · Limited duration of start up procedure
- Large inertia time constant
- Embedded regulation facilities
- · highly recommendable application

- · Extreme configuration flexibility in coping with various emergency
- · Multiple prime movers as
- Need of exhaust by-pass system to

Combined cycle

- conditions
- "redundancy" to improve black start performance
- decouple gas and steam cycles

<u>Remarks</u>

 Protection tripping logic influences connection energisation capability

Repowering

- Additional combustion turbines on existing steam unit
- Opposite of combined cycle solution
- · Load rejection procedure to exploit component units' characteristics
- · Exhaust by-pass to exclude feedwater heater

 Specific regulation equipments and prime mover limits affect cold load pick up

start up force towards load rejection

Difficulties in autonomous