Outline of the tutorial

1. Introduction

- 2. Theoretical basis of the LIOV code Return-Stroke Current Model LEMP model Coupling Model
- 3. Application of LIOV Sensitivity analysis Statistical studies
- 4. Interface with EMTP
- 5. Conclusions

Sensitivity analysis CARSON?

ground resistivity

In the determination of lightning-induced voltages, the ground resistivity plays a role

- I) in the <u>calculation of the incident field</u>, and
- II) in the calculation of the line longitudinal parameters (ground correction term)

Sensitivity analysis

ground resistivity

Transmission line Coupling equations by Agrawal et al.

(lossy ground)

Sensitivity analysis TAKEN FROM Cont.

ground resistivity

Sensitivity analysis TAKEM FROM Cont.

From Ishii et al. CIGRE Colloquium SC33, Toronto, 1997 From De La Rosa et al, IEEE Trans. on PWDR, 1988

Sensitivity analysis

Effects of inclined lightning channel

Comparison with [A.Sakakibara-"Calculation of Lightning-Induced Voltages on Overhead Lines Caused by Inclined Lightning Strokes", IEEE PAS Vol.4 No.1 Jan 1989 pp.683-693]

Effects of tortuosity of lightning channel

Effects of tortuosity of lightning channel

Sensitivity analysis Cont. **Leader induction effects** V_{RS} V , V $_{\rm RS}$ VL Leader **Return stroke** Image

Sensitivity analysis

Leader and return-stroke E field 70 m from triggered lightning

Sensitivity analysis

Leader induction effects

Leader and return-stroke E field 30 m from triggered lightning

(Solid line: *leader* + return stroke Dashed line: return stroke)

Effect of grounding resistance of a shielding wire (multiconductors line)

Comparison with [S.Yokoyama - "Calculation of Lightning-Induced Voltages on Overhead Multiconductor Systems", IEEE PAS Vol.103 No.1 Jan 1984 pp.100-108]

Outline of the tutorial

- 1. Introduction
- 2. Theoretical basis of the LIOV code Return-Stroke Current Model LEMP model Coupling Model
- 3. Application of LIOV Sensitivity analysis Statistical studies
- 4. Interface with EMTP
- 5. Conclusions

The LIOV code has been recently provided with a numerical routine for fast cpmputation of the em field

This has been used in a statistical program based on the Monte Carlo method [Borghetti and Nucci, ICLP, Birmimgham, 1998] for the evaluation of the lightning performances of distribution lines;

Output: number of events that exceed, for a certain ground flash density, a given value

Previous studies:

- ideal ground (Rusck, Chowdhuri, De La Rosa, Jankov-Grzybowski)
- lossy ground (Hermosillo and Cooray): one observation point along the line

With the statistical package of the LIOV program:

- Iossy ground
- all points along the line
- correlation factor between lightning current peak and rise time
- different lateral distance expressions
- correlation between return-stroke velocity and current
- periodical grounding of shielding wire

Lightning current waveshape and parameters

Lightning Current Statistical Parameters

Statistical studies

Statistical studies BERNARDI Cont'd

Striking distances to a conductor (r_s) and to ground (r_g) and lateral attractive distance (d_l) of a line

							20
		<u> </u>			r _g		no.
		С	А	b	А	b	d. s.
$r = A \cdot I^b$	Armstrong and Whitehead		6.7	0.8	6.0	0.8	393
	IEEE WG		8.0	0.65	8.0	0.65	213
	Eriksson		0.67 h ^{0.6}	0.74	na	na	224
	Rizk		1.57 h ^{0.45}	0.69	na	na	309
(*) $r = c + A \cdot I^b$	CESI (*)	3 h ^{0.6}	0.028 h	1	na	na	135

Statistical studies

1 Inputs return stroke velocity line and ground data

Application of the Monte Carlo Method

Cont'd

- 2 Random generation of events (I_p ; t_f : x; y) 10 000
- 3 Induced overvoltages calculation
- 4 Counting of the **n** events generating overvoltages greater than a given value

5 Plot a graph: No. of events/(100 km x year) vs BIL where No. of events / (100 kmx year) = (n/10000) • n_f • 2S • 100/L (with n_f = ground flash density)

Statistical studies TAKEMìN FROM Cont'd

Statistical studies CHECK Cont'd

Lossy ground

b) σ_{g} =0.001 S/m

a) σ_g=0.01 S/m

Comparison with the results presented by Chowdhuri (1989)

1000.00 No. of events having amplitudes exceeding the BIL / (100 km · year) 100.00 10.00 Comparison with the results presented by 1.00 Ξ Hermosillo and This study, ground conductivity = 0.01 S/mCooray (1995) Hermosillo and Cooray, ground conductivity = 0.01 S/m 0.10 This study, ground conductivity = 0.001 S/m Hermosillo and Cooray, ground conductivity = 0.001 S/m 0.01 50 300 100 150 200 250 Basic Insulation Level [kV]

Lossy ground
Statistical studies TAKEN Cont'd

Comparison with the data reported by Eriksson (1989)

Influence of the presence of periodically grounded shielding wires

Statistical studies ACKN

100

150

Voltage [kV]

50

200

250

300

Influence of grounding resistance (Rt)

Cont'd

Statistical studies Cont'd

ACKN

Statistical studies Cont'd

ACKN

Statistical studies ACKN Cont'd

Statistical studies ACKN Cont'd

Influence of the presence of surge arresters

Statistical studies

I [A]	V [kV]
0.0015	34.7
0.002	43.3
0.01	48.5
0.1	51.9
1	55.5
5000	79.1
10000	85.0
20000	94.4

Assumed non-linear characteristic of the surge arrester.

Statistical studies ACKN Cont'd

Outline of the tutorial

1. Introduction

- 2. Theoretical basis of the LIOV code Return-Stroke Current Model LEMP model Coupling Model
- 3. Application of LIOV Sensitivity analysis Statistical studies

4. Interface with EMTP

5. Conclusions

Interface with the EMTP

n-port

The LIOV code calculates:

- LEMP
- Coupling

Its link with EMTP has been realized in collaboration with ENEL-CESI (Univ. Bologna) Other methods for linking LIOV with EMTP have been proposed EdF (EPFL)

The EMTP :

- calculates the boundary conditions
- makes available a large library of power components

Interface with the EMTP Cont'd

Link between LIOV and EMTP

Interface with the EMTP ADD? Cont'd

•*u*1 and *io* are calculated by LIOV at time *t* and input to the EMTP voltage source *V*1'.

•Then, the EMTP solves the circuit on the left (boundary conditions), computes *u*1', and input it to the LIOV voltage source *V*1 to determine the response of the LIOV-line at $t+\Delta t$. • Δt is the integration time-step, set at the same value for both the LIOV and the EMTP, and fixed by the user (ΔI is determined by the program).

Interface with the EMTP

M1, M2: measuring points 🗠 Transformer 👘 Grounding point (neutral)

Validation using data from a more complex system Data: courtesy of Dr. A. Piantini, Univ. Saõ Paulo

Interface with the EMTP

Validation using data from a more complex system Data: courtesy of Dr. A. Piantini, Univ. Of São Paulo

Validation using data from a more complex system Data: courtesy of Dr. A. Piantini, Univ. Of São Paulo

Outline of the tutorial

1. Introduction

- 2. Theoretical basis of the LIOV code Return-Stroke Current Model LEMP model Coupling Model
- 3. Application of LIOV Sensitivity analysis Statistical studies
- 4. Interface with EMTP
- 5. Conclusions

Conclusions

- 1. LIOV represents an improvement with respect to previous available tools (e.g. Rusck simplified formula).
- 2. the various models included in the code have been validated with existing experimental data
- 3. Influence of:
 - Ground resitivity
 - Line construction
 - Leader
 - Channel inclination and/or tortuosity
 - Corona
 - Presence of shielding wire (periodically grounded)
 - Surge arresters

can be studied with reasonable accuracy.

- 4. The statistical study on the considerd overhead line shows that
- Ground resistivity, line height and correlation factor (I_p-t_f) do affect the results
- The expression of the striking distance is important. However is progressively less important as the ground conductivity decreases
- Case of a perfectly conducting ground (no shielding wires): the maximum induced voltage appears at the point of the line nearest to the stroke location ==> the evaluation can be performed considering a single observation point
- Case of a lossy ground, or periodically grounded shielding wires: the maximum induced voltage does NOT necessarily appear at the point of the line nearest to the stroke location ==> the analysis has to be extended to all points along the line
- Grounding resistance of sw does affect the performance of the line
- Reasonable agreement with the available exp. data: more data are needed

Conclusions

- 5. More accurate models for grounding and surge arresters can be used in a straightforward manner using the LIOV-EMTP.
- 6. With LIOV-EMTP statistical analyis can be carried out on a specific distribution system with complex configuration

Cont.

ground resistivity

Cont.

Time (µs)

Cont.

NOTE: line voltage and current are known at all discretization points along the line at time step *n* are known, except for the porblem unknowns

Cont.

Grounding at a generic point of a monoconductor line

Ricordiamo la discretizzazione della prima equazione del modello di Agrawal:

$$\frac{\partial u^{s}(y,t)}{\partial y} + R'i(y,t) + L'\frac{\partial i(y,t)}{\partial t} = Ey(y,t)$$
(1)

da cui:

$$\frac{v_{k+1}^n - v_k^n}{\Delta y} + R' \frac{i_k^n + i_k^{n-1}}{2} + L' \frac{i_k^n - i_k^{n-1}}{\Delta t} = \frac{Ey_k^n + Ey_k^{n-1}}{2}$$
(2)

dalla precedente possiamo ricavare il valore di i_k^n :

$$i_{k}^{n} = A_{3} \left[\frac{Ey_{k}^{n} + Ey_{k}^{n-1}}{2} - \frac{v_{k+1}^{n} - v_{k}^{n}}{\Delta y} + A_{4}i_{k}^{n-1} \right]$$
(3)

dove

$$A_3 = \left(\frac{L'}{\Delta t} + \frac{R'}{2}\right)^{-1} \qquad A_4 = \left(\frac{L'}{\Delta t} - \frac{R'}{2}\right)^{-1}$$

Cont.

Grounding at a generic point of a monoconductor line

Possiamo quindi scrivere per le correnti nei nodi k e k+1 le seguenti equazioni:

$$i_{k}^{n} = A_{3} \left[\frac{Ey_{k}^{n} + Ey_{k}^{n-1}}{2} - \frac{v_{k+1}^{n} - v_{k}^{n}}{\Delta y} + A_{4}i_{k}^{n-1} \right]$$
(4)
$$i_{k+1}^{n} = A_{3} \left[\frac{Ey_{k+1}^{n} + Ey_{k+1}^{n-1}}{2} - \frac{v_{k+2}^{n} - v_{k+1}^{n}}{\Delta y} + A_{4}i_{k+1}^{n-1} \right]$$
(5)

Supponendo i versi delle correnti indicati nella figura precedente possiamo scrivere per le correnti $i_{k'}$, $i_{k'}$, $i_{g'}$ l'equazione di Kirchoff delle correnti:

$$ig^{n} = i_{k'}^{n} - i_{k''}^{n}$$
 (6)

Le correnti $i_{k'}$, $i_{k'}$, possono essere legate alle correnti dei nodi adiacenti mediante una interpolazione lineare:

$$i_{k'}^{n} = \frac{3i_{k}^{n} - i_{k-1}^{n}}{2}$$
(7)
$$i_{k''}^{n} = \frac{3i_{k+1}^{n} - i_{k+2}^{n}}{2}$$
(8)

Cont.

Grounding at a generic point of a monoconductor line

Inoltre per la tensione v_{k+1}^n possiamo scrivere la seguente equazione:

$$v_{k+1}^n = R_t i g^n + HL \cdot Ez^n \tag{9}$$

Inserendo nella (4) le (6) (7) (8) otteniamo:

$$v_{k+1}^{n} = R \left[\frac{3i_{k}^{n} - i_{k-1}^{n} - 3i_{k+1}^{n} + i_{k+2}^{n}}{2} \right] + HL \cdot Ez^{n}$$
(10)

Le (4) (5) e (10) costituiscono il sistema di equazioni che permette di determinare le incognite del problema.

Cont.

Grounding at a generic point of a monoconductor line

L'estensione al caso di una linea multiconduttore risulta immediato dato che le equazioni (4) (5) e (10) risultano ancora valide sostituendo alle variabili le rispettive matrici:

$$\begin{bmatrix} i \end{bmatrix}_{k}^{n} = \begin{bmatrix} A3 \end{bmatrix} \left(\frac{\begin{bmatrix} Ey \end{bmatrix}_{k}^{n} + \begin{bmatrix} Ey \end{bmatrix}_{k}^{n-1}}{2} - \frac{\begin{bmatrix} v \end{bmatrix}_{k+1}^{n} - \begin{bmatrix} v \end{bmatrix}_{k}^{n}}{\Delta y} + \begin{bmatrix} A4 \end{bmatrix} \begin{bmatrix} i \end{bmatrix}_{k}^{n-1} \right)$$
(11)
$$\begin{bmatrix} i \end{bmatrix}_{k+1}^{n} = \begin{bmatrix} A3 \end{bmatrix} \left(\frac{\begin{bmatrix} Ey \end{bmatrix}_{k+1}^{n} + \begin{bmatrix} Ey \end{bmatrix}_{k+1}^{n-1}}{2} - \frac{\begin{bmatrix} v \end{bmatrix}_{k+2}^{n} - \begin{bmatrix} v \end{bmatrix}_{k+2}^{n} - \begin{bmatrix} v \end{bmatrix}_{k+1}^{n}}{\Delta y} + \begin{bmatrix} A4 \end{bmatrix} \begin{bmatrix} i \end{bmatrix}_{k+1}^{n-1} \right)$$
(12)
$$\begin{bmatrix} v \end{bmatrix}_{k+1}^{n} = \begin{bmatrix} RK \end{bmatrix} \left(\frac{3 \begin{bmatrix} i \end{bmatrix}_{k}^{n} - \begin{bmatrix} i \end{bmatrix}_{k-1}^{n} - 3 \begin{bmatrix} i \end{bmatrix}_{k+1}^{n} + \begin{bmatrix} i \end{bmatrix}_{k+2}^{n} \right) + HL \cdot \begin{bmatrix} Ez^{n} \end{bmatrix}$$
(13)

dove

$$\begin{bmatrix} i \end{bmatrix}_{k}^{n} = \begin{pmatrix} i 1_{k}^{n} \\ i 2_{k}^{n} \\ i 3_{k}^{n} \\ \vdots \\ i NC_{k}^{n} \end{pmatrix} \begin{bmatrix} v \end{bmatrix}_{k}^{n} = \begin{pmatrix} v 1_{k}^{n} \\ v 2_{k}^{n} \\ v 3_{k}^{n} \\ \vdots \\ v NC_{k}^{n} \end{pmatrix} \begin{bmatrix} Ey \end{bmatrix}_{k}^{n} = \begin{pmatrix} Ey 1_{k}^{n} \\ Ey 2_{k}^{n} \\ Ey 3_{k}^{n} \\ \vdots \\ Ey NC_{k}^{n} \end{pmatrix} \begin{bmatrix} Ez \end{bmatrix}_{k}^{n} = \begin{pmatrix} Ez 1_{k}^{n} \\ Ez 2_{k}^{n} \\ Ez 3_{k}^{n} \\ \vdots \\ Ez NC_{k}^{n} \end{pmatrix}$$

Cont.

Grounding at a generic point of a monoconductor line

Le matrici presenti nelle (11) (12) (13) hanno le seguenti espressioni:

$$\begin{bmatrix} RK \end{bmatrix} = \begin{pmatrix} RK_{11} & 0 & 0 & | & 0 \\ 0 & RK_{22} & 0 & | & 0 \\ 0 & 0 & RK_{33} & | & 0 \\ ----- & --- & | & --- \\ 0 & 0 & 0 & | & RK_{NCNC} \end{pmatrix}$$

$$\begin{bmatrix} A_3 \end{bmatrix} = \frac{\begin{bmatrix} L_{ij} \end{bmatrix}}{\Delta t} + \frac{\begin{bmatrix} R_{ij} \end{bmatrix}}{2}$$
$$\begin{bmatrix} A_4 \end{bmatrix} = \frac{\begin{bmatrix} L_{ij} \end{bmatrix}}{\Delta t} - \frac{\begin{bmatrix} R_{ij} \end{bmatrix}}{2}$$

Dove *RK_{ii}* rappresenta la resistenza di messa a terra del conduttore i-esimo
Cont.

Effect of grounding resistance of a shielding wire (multiconductors line)

Comparison with [S.Yokoyama - "Calculation of Lightning-Induced Voltages on Overhead Multiconductor Systems", IEEE PAS Vol.103 No.1 Jan 1984 pp.100-108]

Effect of the shielding wire in a two-conductor line

Rt=0 Ohm Zc=491.3 Ohm

I=12 kA di/dt=40 kA/us

Cont.

Effect of the shielding wire in a two-conductor line

observation point at 350m

Cont.

Effect of the shielding wire in a two-conductor line

observation point at 400m

Cont.

Effect of the shielding wire in a two-conductor line

observation point at 450m

Effect of the shielding wire in a two-conductor line

observation point at 500m

Cont.

Effect of the shielding wire in a two-conductor line

observation point at 550m

On the influence of the em field component

Nucci and Rachidi, IEEE Trans. on EMC, Vol. 37, No. 4, November 1995.