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Introduction

Progresses in the 
technology of  the 
electrical energy 
storage

Improvement of 
the performance 
of hybrid-electric 
vehicles

Within the electrochemical  systems for the electrical 
energy storage, recent improvements in the reliability of 
Ni-Zn batteries make this technology one of the most 
promising for hybrid-electric vehicles applications.
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Ni-Zn batteries short-term characterization 
and comparison with lead-acid ones

Ni-Zn battery characteristics:

Evercel; model: Ni-Zn 40-12; 

38.5 Ah at C/20; 
32.7 Ah at C/1; 
31.1 Ah at 3C;
20°C;

weight 7.88 kg.
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Lead-acid battery characteristics:

Hawker; model: Genesis 
G12V26Ah10EP; 

26 Ah at C/10, 22.5 at C/5;
20°C;

weight 10.1 kg.
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Ni-Zn Charge
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phase 1: charge at 
constant current 
C/1.75, maximun
voltage: 14.7 V;
phase 2: stop for 5 
minutes;
phase 3: charge at 
constant voltage 
14.35 V, minimum 
current C/4.



phase 1: charge 
with constant 
current equal to 
0.4×C/10 for a 
charging voltage 
less than 14.7 V 
(the duration of the 
phase 1 is T1);
phase 2: charge 
with constant 
voltage equal to 
14.7 V for time 
equal to T2 = 2h-
T1.
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Lead-acid Charge
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Ni-Zn discharges with constant current
Ni-Zn battery performances as function of discharge rate and 
temperature. 
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The decrease of the 
capacity for 
temperatures above 
30° is probably due 
to the Nickel 
electrodes that show 
a kind of unstable 
behavior above this 
temperature. 

confidence 90%
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Dynamic discharges based on the urban part of 
the ECE-15 cycle: ECE-15/UDC
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This type of tests is 
suitable for the 
simulation of the 
batteries 
performance when 
used on electrical 
vehicles and, in 
particular, when 
urban paths are of 
interest.
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Ni-Zn dynamic discharges based on the ECE-
15/UDC mini-cycle.

(Figure show recorded quantities for the Ni-Zn elements under test. 
The ambient temperature is of 25 °C)
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Ni-Zn batteries short-term characterization
and comparison with lead-acid ones        Cont.
Lead-acid dynamic discharges based on the ECE-
15/UDC mini-cycle for the lead-acid elements.

(Figure show recorded quantities for the lead acid elements under 
test. The ambient temperature is of 25 °C)
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Comparison between Ni-Zn and lead-acid 
performances.

Ni-Zn specific 
energy [Wh/kg]

Lead-acid specific 
energy [Wh/kg]

C/5 constant 
current discharge 49.6 40.7

ECE-15/UDC 
dynamic discharge 27.9 20.3

Note: average values obtained from 6 elements for Ni-Zn batteries 
and 2 elements for lead-acid ones



Ni-Zn batteries long-term characterization
A long-term characterization has been performed 
considering the on-board vehicle use of the Ni-Zn 
batteries. Hence the urban part of the ECE-15 cycle has 
been adopted in order to reproduce the power 
absorption conditions met on a light electrical vehicle.

Long-term test sequences: 

series of 20 charge – discharges macro 
cycles;

C/5 control discharge to evaluate the 
effective battery capacity and, in turns, 
the battery end-of-life.



Capacity of the Ni-Zn 
battery delivered during 
the control discharges 
as a function of the total 
delivered capacity

Ni-Zn batteries long-term characterization
Cont.
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Capacity of the Ni-Zn 
battery delivered during 
the control discharges 
as a function of the total 
delivered capacity

Ni-Zn batteries long-term characterization
Cont.
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Ni-Zn batteries long-term characterization
Cont.
The measured value of the battery capacity during C/5 
control discharge, is compared with the rated battery 
capacity at C/5 discharge rate and, when a decrease of 
20% the rated capacity is reached, the battery is 
considered at the end of its life.
Note the severity of such a criterion, since for hybrid 
vehicle applications the capacity needed for the vehicle 
to cover a standard one-day route is reasonably much 
lower than 80% the rated one.

The long term tests show a performances of the Ni-Zn 
batteries of 600 total cycles with an approximately total 
delivered capacity of 15000 Ah.



Ni-Zn model for capacity estimation 
The proposed model for the Ni-Zn capacity estimation, is 
inspired by a previous one, presented in [1], which was 
conceived to predict the behavior of lead-acid batteries 
according to the following relation:
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θ is the electrolyte temperature;
I is the battery current during a constant discharge profile;
θf is the electrolyte solidification temperature;
Kc, C0*, ε, δ, I* are model parameters to be identified by means of tests 

described in [1]. 

[1] M. Ceraolo; G. Pede, “Techniques for estimating the residual range of an electric vehicle”, IEEE 
Transactions on Vehicular Technology, Volume: 50-1 , Jan 2001, page(s): 109 –115.
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Such a model however, if applied to Ni-Zn batteries has 
been found to provide only a moderate agreement 
between experimental results and predicted ones. 

Possible reasons:

1. capacity variation due to temperature and due to the discharge 
current are ‘decoupled’. Assumption reasonable for lead-acid 
batteries (temperature coefficient );

2. Nickel electrodes show a kind of unstable behavior above 
30°C 
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Proposed model:
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θ is the electrolyte temperature;
I is the battery current during a constant discharge profile;
Cn is the rated capacity at current In and temperature θn; 
ε, δ, I* are model parameters to be identified by means of short-time tests.
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Identification of the parameters ε, δ, I*

An estimation of the three above parameters can be 
achieved by carrying out more than 3 measurements 
and by using them, together with a non-linear least 
squares method , to infer ε, δ and I*.

The values of parameters ε, δ and I* so determined are: 
ε =0.0225
δ =0.0428 
I*=21.8 A 
with a residual norm of 2.7%
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Comparison between 
measurements and 
model predicted 
capacities at different 
temperatures and 
discharge rates.
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Conclusions

The comparison between the two battery technologies 
under test has shown that the Ni-Zn one represents a 
promising solution for the hybrid/electrical vehicles 
application.

In particular the short term performance analysis shows 
the superior behavior of the Ni-Zn technology, as 
compared with the lead-acid one, when dynamic 
discharge profiles are considered. In addition, more 
homogeneous values of the supplied capacity as a 
function of the type of discharge, discharge rate and 
temperature, has been found for the Ni-Zn batteries.
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Concerning the long-term performances, interesting 
values of total supplied capacity and total number of 
cycles are obtained for the Ni-Zn batteries under test. 
This result is particular interesting considering the type 
of selected discharges based on the ECE-15/UDC 
dynamic cycle.

An engineering model aimed at estimating the capacity 
supplied by the Ni-Zn batteries, as a function of the 
constant discharge current and temperature, has been 
proposed and compared, with sufficient agreement, with 
experimental results.




