DIMACS Center, Rutgers University, Piscataway, NJ Workshop on Next Generation of Unit Commitment Models September 27-28, 1999

DEMAND-SIDE BIDDING

IN A COMPETITIVE ELECTRICITY MARKET

Alberto Borghetti

University of Bologna

The presentation is based on work carried out as part of a collaborative project between the University of Illinois at Urbana-Champaign (G. Gross) and the University of Bologna (C. A. Nucci)

OUTLINE

- Generalized model for competitive power pool
- Characteristics of DSB incorporation
- Solution methodology
- Implementation aspects
- Numerical results
- Conclusions

COMPETITIVE POWER POOL INCLUDING DEMAND-SIDE BIDDING

SUPPLY CURVE and price determination

SUPPLY / DEMAND CURVES and price determination

DEMAND-SIDE BIDDING

DIRECT LOAD CONTROL

OUTLINE

- Generalized model for competitive power pool
- Characteristics of DSB incorporation
- Solution methodology
- Implementation aspects
- Numerical results
- Conclusions

COMPETITIVE POWER POOL MODEL

Supply-side bid definition (of generator i)

control $\begin{cases} u_t & \text{Zero-one} \\ \text{constraints: minimum up, ue} \\ \text{variables} & p_t & \text{dispatched output at time } t \\ \text{constraints: upper/lower lin} \end{cases}$ zero-one decision variable at time t constraints: minimum up/down times

constraints: upper/lower limits

inputs $\begin{cases} b^f & bid price function of MW provided \\ b^s & start-up price function \end{cases}$

COMPETITIVE POWER POOL MODEL INCLUDING DEMAND SIDE BIDDING

Demand-side bid definition (of consumer j)

control variables

decision variable at time *t constraints*: min. times and control period load reduction dispatched at time *t constraints*: upper/lower reduction limits

 b^{J} bid function of MW reduced

start-up function

inputs {

 h^{s}

ratio of the payback at time *t* due to a reduction at time *h*

 r_t payback at time t due to a dispatched reduction at time $h(y_h)$

d reduction control period

Adapted from Strbac, Farmer and Cory, IEE Proc., 1996

OBJECTIVE FUNCTION $\sum \left[b_i^f (p_{i,t}) u_{i,t} + b_i^s (\tau) (1 - u_{i,t-1}) u_{i,t} \right]$ m_1 *i*=1 $\left[b_{j}^{f} \left(y_{j,t} \right) w_{j,t} + b_{j}^{s} \left(\tau \right) \left(1 - w_{j,t-1} \right) \right]$

DEMAND CONSTRAINT

 $D_t - \sum_{i=1}^{I} p_{i,t} \cdot u_{i,t} - \sum_{i=1}^{J} y_{j,t} \cdot w_{j,t}$ j=1i=1 $+\sum \sum z_{j,t}^{h} \cdot y_{j,h} \cdot w_{j,h} \leq 0$ j=1 $h\in d$ $t = 1 \cdots T$

OUTLINE

- Generalized model for competitive power pool
- Characteristics of DSB incorporation
- Solution methodology
- Implementation aspects

- Numerical results
- Conclusions

DEMAND-SIDE BIDDING IN THE LR ALGORITHM

De-coupled dual problem (of consumer j)

SOFTWARE IMPLEMENTATION

Relaxed local problem solution: dynamic program

Additional term to the on-state Bellman values at period *t* for consumer *j*: τ

Iteration

Development environment: AMPL (a modeling language for mathematical programming)

Quadratic solver problem: MINOS

OUTLINE

- Generalized model for competitive power pool
- Characteristics of DSB incorporation
- Solution methodology
- Implementation aspects
- Numerical results
- Conclusions

Case study

10 thermoelectric generators generator 9 non available in periods 20-42

Adapted from Bard, OR 1988

forecasted load diagram in 48 periods

DSB Control Period Lower limit Upper limit

2 demand side bidders

dsb 1 19-28 5 MW 500 MW

dsb 2 33-42 5 MW 500 MW

Case 1

payback pattern = 100% in the following 6 periods

Case 2 Payback pattern = 90% in the following period

Case 3

Payback pattern = 50% in the following 2 periods The demand-side bids are higher that the previous cases

Multipliers values

Case 4

payback pattern = 100%, uniformly distributed

Case 5

payback pattern = 50% (DSB1) and 70% (DSB2), unif. distributed

Conclusions

- Demand-side bidding allows consumers to play a proactive role in the price determination without changing the price determination procedure
- The economic impact of DSB is that it reduces the overall costs
- By using the LR algorithm, we are allowed to disaggregate the model into separate subproblems
- The model developed permits to quantify the effects of the payback ratio as well as of the recovery period duration.